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Abstract

The ansatz of steepest entropy ascent (SEA) has been recently identified as the
fourth law of thermodynamics. The law describes a system’s evolution from an
out-of-equilibrium state toward the globally unique stable equilibrium state of
maximum entropy. The SEA ansatz sets the second law of thermodynamics as a
foundation to merge mechanics and thermodynamics. We present a brief introduc-
tion to the fundamental tenets of the theory and provide the underlying principles
contributing to formalism. SEA equation of motion is highly nonlinear; its exact
analytical solutions are limited and available only for some very special cases.
We have successfully developed an approximate analytical tool called the fixed
Lagrange’s multiplier (FLM) method to help us analytically solve the two-level
and higher dimensional systems.
Quantum walks are used as a universal model of computation. Using this model,
we analyze a single component N−level system and apply our FLM scheme to solve
the SEA equation of motion analytically. A comparison of the solution obtained
using FLM, and the complete numerical solution is presented, and we notice strong
agreement. Regions of maximum entropy production rate in agreement with the
SEA have been identified.
To extend the SEA analysis to simple composites involving two qubits, we need
analytical roots and relevant results for the case of four-level Bloch vector formal-
ism. We present a general framework for the characterization of N−level Bloch
parametrization. We provide analytical roots for the N = 3 level and completely
parametrized roots for the N = 4 level. We also provide a framework for finding
an analytical trace of general operators in this representation.
Lastly, we address the problem of no-signaling in a nonlinear quantum theory. It
has been well established in the literature that a nonlinear theory of quantum
mechanics allows for faster-than-light communication (signaling) between two
noninteracting parts of a composite system. However, we show that SEA is built
to respect no-signaling. We present the equation of motion for composite systems.
We consider the cases of separable composites and nonseparable entangled/mixed
composites in the form of Bell diagonal states. Our results confirm that the SEA
is a valid theory involving nonlinear dynamics that respects no-signaling criteria
and presents a fundamental approach to the problem of decoherence modeling for
open and closed quantum systems.



Keywords: Fourth law of thermodynamics, Steepest entropy ascent, Sponta-
neous decoherence, Entropy generation, Nonequilibrium dynamics, Bloch represen-
tation, No-signaling, Nonlinear quantum theory
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Introduction

1





I stood by the edge,
of the sea of knowledge

the dark of the unknown abyss,
was terrifying.





Since the introduction of quantum mechanics (QM) into the arena of physics,

every new revelation of the theory has also produced new challenges to

our classical intuition of the physical world. The pile of research works

invested in understanding each of these complex ideas- be it wave-particle duality,

entanglement, the meaning of state, the measurement problem, the interpretation

of QM, or the philosophy of QM, has only grown higher and reached deeper. Yet,

the subjects still elude a clear understanding (see Ref. [1]). All of these are in

the context of linear quantum mechanics. When we consider the case of nonlinear

extensions of QM, we find ourselves in a neverending, ever-expanding canyon of

articles, reports, journals, books, and blogs, which can easily overwhelm the noob

of this field. This vast, and expansive knowledgebase can also fog one’s field of

vision to the pre-existing literature so much so that some theories become obscured

by time despite being interesting and intriguing, while others become re-discovered

and so on. One such theory of nonlinear extension of quantum mechanics involved

seeking an attempt to merge mechanics and thermodynamics through setting

entropy as a fundamental theory of nature via introducing a stability postulate in

the framework of QM ([2–5]). Consequently the stage was set for merging mechanics

and thermodynamics which gave birth to the quantum thermodynamics formalism

[6–8]. This theory eventually was called the steepest entropy ascent (SEA) ansatz

[9]. Albeit radical in nature, some of the principle ideas of this formalism have been

overlooked by the larger physics community and the theory remained dormant for

quite some time. Eventually, a researcher from MIT re-discovered the results using

some similar fundamental tenets of the SEA [10, 11]. This publication became the

key moment that initiated a flurry of publication by the original author and began

a new generation of research in SEA [12–23]. All of these works culminated into

the confirmation that SEA can be called as the fourth law of thermodynamics [24].

The goal of this thesis is to study the effect of the fourth law of thermodynamics
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Chapter 1 Introduction

on finite-dimensional single and composite quantum systems. Finite-dimensional

quantum systems lie at the heart of modern quantum applications, and the fourth

law of thermodynamics provides a fundamental basis for understanding decoherence

in those systems. Before we proceed with our agenda, it is necessary that we retrace

our path through the historical development of SEA. We can then discuss the

current state of the literature regarding the application of decoherence modeling

in the context of single and composite quantum systems. As SEA theory produces

a strongly nonlinear equation of motion for the system under observation, certain

physical and philosophical implications become difficult to look away from. We

provide a backdrop of such development. Finally, we discuss how this thesis is

structured.

1.1 A brief history of SEA

The history of SEA begins with the debate regarding the status of the second law

of thermodynamics as a fundamental law of nature. As opposed to the prominent

notion of the time, Margenau, Hatsopulous, Keenan, Park, Gyftoplulous and like-

minded physicists desired the second law to be as fundamental as the conservation

of energy, and not merely of statistical nature [25]. This claim was justified from a

historical perspective, and also from the perspective of various stability criteria,

and Gibbs’s principle of general inertia [25]. Later on, Park questioned the very

foundation of the von Neumann formalism in Ref. [26]. Here the character of the

mixed state is pondered upon and claimed that the concept of a mixed state does

not arise from a mixture of pure states, but rather has an interpretation of its own.

In follow-up work, Park went on to prove an earlier version of the no-go theorem

(arising from the linear structure of QM) [27]. Using these results, Hatsopulous

and Gyftopulous, in their series of publications, introduced the stability postulate

6



1.2 The second age of SEA

in the realm of quantum mechanics, gave a new interpretation to the entropy

functional, and introduced the concept of preparation contextuality through the

terms ‘unambiguous preparation’ [2–5]. Park also discussed how a quantal theory

compatible with thermodynamics will essentially be non-linear [28]. Based on these

works, in 1984, Beretta introduced a thermodynamically compatible nonlinear

equation of motion for a single constituent of matter [29]. In the subsequent

year, he provided exact analytical results for a qubit under certain constraints [7],

followed by providing a general equation of motion under similar dynamics for

a composite [30]. Following this, he showed that a nonlinear evolution governed

by entropy maximization is physically acceptable if we let go of the notion of

equilibrium based on the Lyapunov concept only, as it is not sufficient for the

existence of a globally stable equilibrium [31]. Beretta finally named this theory as

the steepest entropy ascent (SEA) formalism [9].

1.2 The second age of SEA

The initial phase of SEA development was suppressed by a sheer lack of enthusiasm

and discussion. In 2001, Gheorghiu-Svirchevski independently got the idea of

maximization of entropy production subject to certain constraints [10]. Soon after

he realized that his theory is a variation of the SEA ansatz [11]. However, this result

created a new splash in the otherwise calm pool of SEA research. Beretta reinitiated

the discourse with renewed vigor. He first showed how this formalism is compatible

with thermodynamics [12]. Then it was shown that the non-linear equation of

motion thus derived follows a set of necessary and sufficient conditions [13]. In

Ref. [15] Beretta further formalized SEA, polished some arguments, introduced

the ontological hypothesis, and explained the underlying geometric construction

with vivid details [15]. In the work published in Ref. [16], he further worked out
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Chapter 1 Introduction

the detailed structure of SEA for composite systems and in essence completed the

formalism, suitable for application to modern problems of contemporary physics.

This flurry of publications did not go unnoticed this time, and von Spakovsky

picked up the mantle and started applying SEA to various scenarios. First, it was

shown how SEA leads to typicality and the agreement is not merely pedantic [19].

In the same year, Beretta showed that SEA has a structure similar to other non-

linear models of studying nonequilibrium thermodynamics and presented a uniform

notation to the problem [17]. This thesis will heavily rely on those standardized

notations. G. Li and Spakovsky studied SEA for chemically reactive systems and

performed atomistic modeling [18]. Then they studied heat and mass diffusion in

the far-from-equilibrium region using SEA [21]. In Ref. [32] they introduced the

concept of hypoequilibrium to define temperature for out-of-equilibrium systems,

and in this regard, studied the effect of SEA on the relaxation process of isolated

chemically reactive systems.

Meanwhile, Beretta has established the equivalence of the SEA formalism to

the GENERIC formalism of intrinsic quantum thermodynamics [33]. A note on

GENERIC. It is an abbreviation for the general equation for the non-equilibrium

reversible-irreversible coupling. In this scheme, the thermodynamic evolution of

quantum states is modeled through different levels of description [34, 35]. In this

formalism, macroscopic dynamics is favored over the microscopic structure of the

primitive level, thus setting the constraints as global invariants of motion. By

showing equivalence with this formalism, Beretta showed the diversity of SEA and

settled many doubts regarding its applicability. Cano-Andrade et. al., showed

how SEA can be used to study two-electron composites, alongside showing better

agreement with the experimental results regarding cavity-QED correlation studies

compared to existing phenomenological modeling [20]. Beretta continued pushing

the scope of SEA, and very recently showed that this theory can be called the

8
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fourth law of thermodynamics [24].

1.3 Decoherence study in quantum walks

The SEA approach is the first principled take on decoherence. However, the

paradigm of decoherence studies has been dominantly enriched by involving mas-

ter equations and phenomenologically modeling decoherence. In this approach,

Lindblad-type master equations are employed to study the relaxation of an out-

of-equilibrium system [15, 36]. As a modeling tool for studying such phenomena,

quantum walk (QW), which is the quantum analog of the classical random walk,

are used [37–39]. They can be mainly categorized into discrete-time quantum

walk (DTQW), and continuous-time quantum walk (CTQW) (see Refs. [40–42]

for review). The reasons for the use of QWs are versatile and widespread. They

present a universal model for computation [43], and are used for spatial search

algorithms [44]. QWs have also been applied to study and understand the nature

of entanglement in many-body systems [45–49]. In this thesis, we are interested in

modeling the dynamics of the single finite-level system.

Decoherence, being a fundamental aspect of reality, is studied in various contexts.

QWs being universal in nature provide some elementary yet insightful testbeds

for such studies. The first studies were done by Viv Kendon and group in Ref.

[50] where they showed that introducing little decoherence in QWs produces

faster spread and rapid mixing. Their results were for DTQWs. In Ref. [51]

decoherence was observed for QWs driven by many coins. For the CTQW mixing

and decoherence studies were performed by Fedichkin et. al., in Ref. [52]. Even

now there is active research in understanding decoherence and mixing in the case

of QWs via various phenomenological modeling [53–56].

Besides studying decoherence, thermodynamic studies on QWs are also active

9



Chapter 1 Introduction

areas of research. Consider the work of Romanelli and colleagues in Refs. [57,

58], where they have studied thermodynamic properties of QWs by varying the

contribution due to interference factor. This interference factor was introduced by

Romanelli et. al., in Ref. [59] where they split the QW evolution into two parts-

one consisting of a Markovian process, and the other being the above-mentioned

interference term which induces unitary evolution. Recently CTQW in the presence

of quadratic Hamiltonians has been studied [60], and the results somewhat agree

with SEA results. However, it appears that this formalism may attract some

unwanted non-physical effects should it be applied to composite walks.

1.4 The Bloch representation

To study finite-dimensional quantum systems, a proper representation seems to be

essential. The representation should be scalable, should help us exploit symmetries

in the system, and may not hinder access to the underlying structures embedded

in the description. The Bloch representation seems to be the just candidate in this

case. Most of the success of the representation lies in the two-level case, where

the available state space is a Reimann sphere in three dimensions [61, 62]. The

case of the general representation is not so straightforward either geometrically or

algebraically. In 1971, Park and Band introduced the multipole expansion concept

to the scheme of Bloch representation and showed a general formalism exists [63,

64]. Their formalism equated the Bloch representation to the angular momentum

representation and used properties of SU(N) algebra, although this result was

way ahead of its time. After a long gap, as the demand of the times increased, a

set of works in this arena began to surface. Byrd and Khaneja used the concept

of coherence vector instead of Bloch vector to parametrize the density matrix,

and consequently described the characterization of positivity of such matrices

10
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[65]. In the same year, Kimura described the structure of N -level systems using

Bloch vectors and introduced some nice trace invariants in the foray [66]. A few

years down the line, Boya and Dixit discussed the geometry of the N−level Bloch

representation using Casimir invariants [67]. In the same year, Bertlmann et. al.,

re-introduced Bloch representation for qudits using generalized Gell-Mann matrices

[68]. A good review of the geometry and structure of general Bloch representation

was given by Brüning [69].

1.5 A problem of signaling

In the year 1989, the late Prof. Weinberg enquired whether QM is truly linear, and

suggested some ideas for testing that non-linearity, if present [70, 71]. This was a

very radical proposition at the time and immediately garnered attention. In an

attempt to meet Weinberg’s criteria, Gisin [72] and Polchinski [73] showed that a

non-linear Hamiltonian formalism leads to supraluminal communication (signaling)

between two non-interacting subsystems of a composite, thus establishing something

known as an Einstein-Podolsky-Rosen (EPR) telephone [72]. This immediately

violates causality and allows the EPR channel to be used as a resource for faster-

than-light communication. Despite the negative result, many researchers devoted

a significant amount of resources to finding a non-linear formalism of QM that will

respect no-signaling. Gisin continued the search and established that non-linearity

introduced via the stochastic formalism involving Lindblad-type master equations

does respect no-signaling [36]. However, in this formalism, the mixed states can go

to pure states and vice versa, implying there is a non-unital underlying process

involved. Later, Ferrero et. al. showed, that the only type of non-linearity that

can be accommodated in the framework of no-signaling respecting irreversible

quantum theories is the one involving non-linear temporal evolution [74]. They
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also raised some pertinent philosophical questions by asking the validity of convex

linear maps in this regard, and how the processes that involve mixed state to

pure state evolution can coexist in a thermodynamically compatible framework.

Citing this, Spakovsky claimed that SEA is also no-signaling but did not provide

definitive proof [19]. Beretta had also considered the no-signaling problem but did

not conclusively give proof of it either [16, 20]. Very recently, Rembieliński and

Caban showed that the minimal non-linearity that can be no-signaling must be

convex quasilinear maps [75, 76].

1.6 Motivation for the thesis

The previous sections provided a gist of the backdrop upon which this thesis is being

to be presented. As we saw, since the development of SEA, despite having a rich

structure, disruptive physical intuition in its conception, and myriad applications,

SEA has not gained the kind of attention it is due. In our opinion, one principal

reason could be the apparent non-trivial and difficult-to-solve equation of motion

that SEA produces. Alongside this, the limited cases (one in this case) of exact

analytical results make this theory difficult to grasp. Numerical results exist for

different scenarios, but not having an analytical structure to it produces a sense of

ambiguity regarding what physical principles are at play. Motivated by this, we

present this thesis with the following objectives:

1. one must try to solve more cases that produce analytical or at least approxi-

mately analytical results.

2. That the solution thus presented should be scalable, so that overall dynamical

features can be easily identified, thus making the theory easier.

3. To present definitive proof that SEA is a truly non-linear extension of QM
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that does not signal.

As we can see, objectives 1 and 2 can be used to simplify some aspects of the SEA

without losing its essential non-linearity, thus opening up the scope for analytical

study and semi-analytical approximation in various cases involving finite-level

quantum systems. We aim to introduce an approximate method to solve various

finite-level systems. In the discussion of sec 1.3 we have seen how the QW case

can be used as a good model to study decoherence for N−level systems. We also

noticed a research gap that exists as there has not been any study of SEA on QWs.

Motivated by this, we desire to apply SEA on QW using our approximation tool to

fulfill objectives 1 and 2. Objective 3 aims to grant SEA the status of a valid non-

linear theory of QM that precludes signaling. This result will open philosophical

implications hitherto undiscussed. Furthermore, the apparent skepticism regarding

the validity of SEA in the physics community at large can also be addressed and

probably erased.

1.7 The outline of the thesis

This thesis is outlined as follows. In chapter 2, we explain the SEA formalism as

it appears in the literature. We elaborate on the underlying principle of stability,

rephrase the second law accordingly, and show how the entropy emerges as a

functinoal that can be used to characterize stability. Thereafter, we present the

variational approach via which the SEA equation of motion (EoM) is proposed by

Beretta. Hereafter will be denoted as Beretta SEA (BSEA) EoM. We discuss the

geometric structure upon which SEA motion is embedded and conclude with a

discussion on the system relaxation time.

In chapter 3, we present the Beretta-given exact solution for a two-level system.

Thence we introduce our approximate analytical formalism. We show how the
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intrinsic non-linearity of BSEA is reduced while retaining the basic features of the

evolution. We present the solution of qubit evolution using our approximate scheme

and comment on the nature of the same. Thus, we partially address objectives 1.

and 2.

The chapter 4, focuses on solving the CTQW problem using SEA formalism

using our approximation tool developed in the previous chapter. We discuss the

quality of the approximation benchmarked against the full numerical solution for

various analyses. By presenting this work, we complete objectives 1. and 2.

Objective 3. requires the development of some mathematical formalism in the

form of analytical roots of Bloch vector representation for N > 2 level systems. As

we saw in section 1.4, there is a need for such analytical results. This research gap

has been addressed in chapter 5. We present the general Bloch parametrization

and then show some analytical roots of density matrices under the same (for the

cases N = 3, and N = 4).

In chapter 6, we use the results developed in chapter 5 to serve the following

purposes. We first present the Beretta composite SEA (BCSEA) EoM. As seen

in the historical developments of SEA in sections 1.1 and 1.2, there is a need for

analytically studying the SEA in the case of simple composites also. To serve this

purpose, we present our solution for separable and mixed composites. We present

our criteria for no-signaling and provide definitive proof of how SEA respects

no-signaling in those cases, thereby completing objective 3.

In the end, we summarize our findings, discuss the possible limitations, and

present possible future directions for research on SEA in the final concluding

chapter 7.
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Steepest Entropy Ascent

15





I looked up towards the ledge,
beyond a very steep ascent

that lay yonder,
impossibiliy personifying.





2.1 Decoherence in phenomenological models

Quantum mechanics (QM) is a linear theory. By linear we mean,

that linear operators act on a linear state-space (Hilbert space) and

evolve linearly in time. In such a theory, a closed system evolves via

unitary transformation, following the Schrödinger-von Neumann formalism. As a

consequence, incorporating non-reversible processes in the scheme of QM becomes

a non-trivial task. One can consider a system S as a part of some larger system,

M (see Fig. 2.1). Then the interaction with the environment (E) is considered,

which is M − S. In this formalism, although M evolves unitarily, the evolution of

the reduced subsystem S can become non-unitary. The correlations that build up

between S and E are destroyed during the coarse-graining process (while partially

tracing out, i.e., averaging over one of the subsystems). At the heart of this

formalism lies the phenomenological reasoning of decoherence: that the destruction

of entanglement happens as soon as correlations are created, thus averaging over

a long time does not contain any information about the initial states. However,

another approach would be to consider decoherence to be a fundamental process in

competition with the building up of correlation due to the Hamiltonian evolution.

Such a mechanism would consider the second law of thermodynamics to be of

a fundamental status, not just a statistical theory. The steepest entropy ascent

(SEA) formalism finds its roots in this fundamental approach to decoherence. Here

in this chapter, we first discuss the phenomenological modeling of decoherence to

highlight the basic structure of the theory and look at its drawbacks. Then we

take a look at the review of the literature on SEA so that we have a grasp of what

the theory entails as we move on to the rest of the thesis.
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S E

M

Energy

Exchange

Figure 2.1 A subsystem S interacting with its environment E. M = E + S evolves
unitarily. The weak coupling between S and E builds up entanglement between the
subsystems.

2.1 Decoherence in phenomenological models

We begin with the idea that a system is never truly isolated, but is in interaction

with some environment, which leads to the evolution of pure states to mixed states.

Density matrix (ρ) is used in this regard. We identify pure states via the condition

ρ2 = ρ, and mixed states satisfy ρ2 ̸= ρ. The system S, and the environment E

undergo a joint unitary evolution (see the schematic diagram Fig. 2.1). During

this evolution, entanglement builds up between S and E. So the necessary question

arises, how do we not observe so? How is it that the reduced density matrices

are effectively decorrelated? The answer lies in the key assumption made in this

modeling. The so-called Markovian assumption [15], ensures that the correlations

smear out as fast as they are built. The whole process can be summed up as given

-
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• S and E undergo joint unitary evolution.

• We can assume a weak coupling between S and E resulting in the building

of entanglement between the two.

• Markovian condition- the correlations die out as soon as they are formed.

• The resulting time-averaged dynamics remain uncorrelated.

One standard justification for using the Markovian assumption lies in the fact that,

if we consider a coarse-graining (time averaging) process over a sufficiently large time

interval, yet small enough compared to that of the system as a whole, the average

correlation is usually negligible. However, this approximation is at odds with the

underlying unitary dynamics of quantum mechanics, and thus presents itself as an

ad hoc addition to the theory of open quantum systems. The reduced probability

distribution follows the Kossakowski-Sudarshan-Gorini-Lindblad (KSGL) form of

master equation used to understand stochastic as well as open quantum systems

[36], and is given as follows-

dρ

dt
= − i

ℏ
[H , ρ] + 1

2
∑

j

(
2V †

j ρVj −
{
V †

j Vj, ρ
})

. (2.1)

The summands in the r.h.s are traceless. An alternative way of writing the Eq. (2.1)

is as follows
dρ

dt
= − i

ℏ
[H , ρ] + 1

2
∑

j

([
Vj, ρV †

j

]
+
[
Vjρ, V †

j

])
. (2.2)

These operators Vj’s are either creation-annihilation operators or transition opera-

tors, effectively allowing mixing from pure states, and Plank constant (ℏ). It is to

be noted, KSGL provides a nonunitary, linear, completely positive map. Despite

being applied in many studies involving decoherence, the KSGL formalism has

some of the following drawbacks [10, 11, 15, 16, 19, 22, 24, 77].
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1. The Markovian assumption, also known as the ‘erasure of correlations’ lies at

the heart of KSGL formalism. This assumption finds itself in contradiction

with the underlying unitary quantum dynamics given that no modification

of the existing QM formalism is being considered.

2. The Markovian assumption is also responsible for the generation of entropy

in this formalism, which makes sense if we assume the second law of thermo-

dynamics to be of statistical nature. The debate on the nature of the second

law not yet being settled [2–5], it does not seem prudent to rely on such ad

hoc origin of entropy production only.

3. As quoted in [15], that a ‘loss of information on the time scale of the observer

leading to a rapid decoherence from the entanglement which continuously

builds up by (at least) weak coupling with environmental degrees of freedom,’

cannot properly explain diffusion through the transport of various physical

properties such as mass, momentum, energy to name a few.

4. This formalism being phenomenological in origin is mainly supported by

empirical results. However, if a fundamental theory can explain the experi-

mental results with better precision, the new theory should be preferable to

KSGL.

5. Due to interaction with the environment, zero eigenvalued states of ρ evolve

to states with non-zero eigenvalues, which leads to mixing. This presents

itself in a position of problem, as we know due to unitary evolution in QM

pure states evolve to pure states. Also, in many situations, physicists restrain

themselves to the effective subspace of the density matrix in the context of

large systems to study some evolution, and KSGL formalism presents itself

as a challenge in those cases as well.
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6. The positivity of the ρ is ensured in forward time but is not guaranteed in

the time-reversed scenario. Consequently, the dynamical semigroup nature

of evolution can be a matter of concern to physicists who expect a theory

consistent with thermodynamics and mechanics to display strong causal

behavior. By this, we mean that if there exists a bijective map between the

initial and final states, we have established strong causality.

Considering these, we are motivated to consult a theory that attempts to

address some of the drawbacks of the KSGL formalism while involving a more

fundamental approach to decoherence.

2.2 The entropy functional

The stability principle [25], the fourth postulate of QM as introduced in [2], and

many other postulates regarding stability and equilibrium are derived from the

concept of entropy. But the direct use of von Neumann form or similar forms

of the definition of entropy may lead to foundational errors among other things.

The definition of state and its philosophical interpretation not being on the same

footing creates most of the issues [26]. Hence, it is prudent to arrive at a definition

of entropy that encapsulates the concept of stability as well as satisfies the desired

properties of a state functional to be used in the SEA formalism. Consider the

following statement [2],

Theorem 2.2.1. Consider a separable system in a state ρ. There exists a property

I , such that it is invariant during all unitary processes, additive for independent

systems, given by the expectation value of the measurement results, and does not

explicitly depend on the number of particles of the constituent species. For a fixed
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constant c, this property is given by

I = c tr(ρ ln(ρ)).

Proof. This proof is taken from Ref. [2], here it is reproduced for the sake of

continuity.

Consider a finite-dimensional (N) separable system A with density matrix ρ having

a complete set of eigenvalues and eigenvectors {λk}, and {vk}, respectively. For

unitary processes, employing the Schrödinger-von Neumann evolution, besides the

number of particles, eigenvalues remain invariant during unitary time evolution.

Consequently, any property that is invariant during unitary evolution should be

dependent on the {λk} only. Since by theorem, I must also be an expectation

value, it is given by

I =
∑

k

λkpk ({λi}) . (2.3)

Where, pk ({λi}) = ⟨vk|P|vk⟩, for some property P(A). A unitary process U12

between two states A1, and A2 of the separable system A involves a cyclic change

in parameters. Consequently, the eigenvalues {λk} remain unchanged but the

associated eigenvectors {vk} undergo a permutation with respect to the fixed

ordering of the eigenvalues or vice versa. Considering this invariance property

of the eigenvalue-eigenvector combination, the quantity I becomes a symmetric

function of {λk} of the form,

I =
∑

k

λkpk ({λi}) =
∑

k

f (λk) . (2.4)

Where, f(λk) is a function of λ only. Now, let us consider two independent systems

A and B with associated states A1 and B1 respectively. The corresponding
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eigenvalues of the density operators of A and B are {λk} (k = 1 · · · M) and {µℓ}

(ℓ = 1 · · · N) respectively. To satisfy the condition of additivity set in the theorem

for I , we can write

IAB =
∑
k,ℓ

f (λkµℓ) =
∑

k

f(λk) +
∑

ℓ

f(µℓ). (2.5)

Consider for some fixed m and n we have, λm, µn = 1, and λk, µℓ = 0 for k ̸=

m, ℓ ̸= n. Then Eq. (2.5) implies the following,

−f(1) + (M × N − M − N + 1) f(0) = 0. (2.6)

Since system sizes are independent of each other, we have f(1) = 0, and f(0) = 0.

Let us now focus on the variation of f with respect to variations in eigenvalues.

Keeping all λ, µ fixed except for λm and λn so that the following is satisfied,

dλm + dλn = 0. (2.7)

Using this we get from Eq. (2.5)

∑
ℓ

µℓ
df(λmµℓ)
d(λmµℓ)

− df(λm)
dλm

=
∑

ℓ

µℓ
df(λnµℓ)
d(λnµℓ)

− df(λn)
dλn

. (2.8)

Suggesting, given the choice of m, n is arbitrary, each side of Eq. (2.8) must be

dependent on µℓ only. Hence, differentiation w.r.t. λm gives,

∑
ℓ

µ2
ℓ

d2f(λmµℓ)
d(λmµℓ)2 − d2f(λm)

dλ2
m

= 0. (2.9)
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Now keeping all µ fixed except for µr and µs (for arbitrary r and s) so that,

dµr + dµs = 0, (2.10)

we arrive from Eq. (2.9),

2µr
d2f(λmµr)
d(λmµr)2 + µ2

rλm
d3f(λmµr)
d(λmµr)3 = 2µs

d2f(λmµs)
d(λmµs)2 + µ2

sλm
d3f(λmµs)
d(λmµs)3 . (2.11)

This can be re-written as,

2x
d2f(x)

dx2 + x2 d3f(x)
dx3 = c (2.12)

for some fixed constant c. The solution to Eq. (2.12) along with the conditions of

f(0), f(1) = 0 gives,

f(x) = cx ln(x). (2.13)

Thus, we have,

I =
∑

k

f(λk) = c
∑

k

λk ln(λk) = c tr(ρ ln ρ). (2.14)

Through Th. (2.2.1), we found I to be a functional which remains invariant

during a unitary process and holds additive property when it comes to a separable

composition of systems. However, we have not yet discussed the case of nonunital

irreversible evolution. To do this, consider the following theorem [3],

Theorem 2.2.2. A property S exists for every system in any state that is invariant

in any reversible adiabatic process, increases in any irreversible adiabatic process,

and is additive for independent separable systems.
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Proof. Following Ref. [3], we present the proof here.

Before we proceed, a definition is in order

Definition 2.2.1. The work done in any reversible adiabatic process for a system A

in contact with a reservoir R, where A starts from some state A1 and ends in the

mutual equilibrium state A0 with R, is the maximum amount of work that can be

extracted through such interaction, and is called available energy of the system

AR.

Hamiltonian operators (H ) for a separable system are expressed as a direct

sum implying energy (E = tr(ρH )) is additive, so is true for the available energy

(Ea) just defined above. Moreover, the density matrix for such a combination can

be expressed in terms of products. Let’s denote finite changes in any property of a

system by ∆. Given all these, it follows that to define an additive property such

as S , we can use the following relation,

∆S = cs∆(E − Ea). (2.15)

Where cs is a constant to be fixed later. As we can see, because E and Ea are

expectation values, following Eq. (2.15), S is also an expectation value. It can be

shown for an adiabatic reversible process (U12) between two states of the system

A1 and A2, ∆12E = ∆12Ea [3]. Hence, for such U12 we have,

(∆12S)rev = 0. (2.16)

Whereas for nonreversible adiabatic changes, the work done is equal to the change

in energy, i.e., −∆12E, but is less than −∆12Ea, so for such a system,

(∆12S)irr > 0. (2.17)
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As we can see, although Th. (2.2.2) establishes S as a property that is additive

for a separable system, and is increasing for an irreversible sense, it does not

guarantee that S has any relation to I , but for the fact that the former seems to

be a generalization of the latter. To establish the form of S , let us consider the

contradictory proposition, that

∆S ̸= cs∆ tr(ρ ln ρ). (2.18)

This assumption does not hold by Th. (2.2.1) for unital evolutions, as either ∆S is

no more invariant, or it loses the additive property for independent systems or both.

However, as seen in Eq. (2.16), ∆S for such processes is zero, thus contradicts our

assumption in Eq. (2.18). To establish reason further, let’s note that the processes

used in the definition of ∆S do not change the degrees of freedom of the system,

and S is an additive property. Therefore, it can be at most a sum of cs tr(ρ ln ρ)

and some linear form containing the particle number of the constituent species.

Let us venture into finding the coefficients for such terms. Consider the case where

there exists no reversible process which connects any two states of the system with

a different number of degrees of freedom. This allows us to choose for ourselves

whatever value of the coefficient we like, including zero. On the other hand, if

such a connection does exist, we would have to determine each such coefficient

experimentally [3], and this is where the third law of thermodynamics plays a key

role. By this law, each of these coefficients becomes zero. Hence, we are compelled

to conclude that S must be of the form of I , i.e.,

S = −kB tr(ρ ln ρ), (2.19)
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where cs is Boltzmann constant (kB) and is determined from experiments on simple

gaseous systems passing through stable equilibrium states [4].

So far, we have established that S is a property of the system that behaves

like entropy, and looks like entropy, hence we can call it the entropy functional.

However, this description is more general and considers reversible and irreversible

processes as originally thought upon by Clausius. This representation also allows

us to formulate the following statement on stable equilibrium [4],

Definition 2.2.2. The state A0 will be in stable equilibrium if and only if for any

other state Ai of the system, the corresponding entropy Si is less than that of A0

(S0) for same values of the state parameters, energy, and the number of particles.

In what follows, we will look into the concept of stability in more detail and will

try to rephrase the second law of thermodynamics from thereon. This rephrasing

is key in the SEA scheme of things, as we can then incorporate the second law of

thermodynamics in the quantum paradigm and get going to the interesting stuff.

2.3 Stability and the second law of thermodynamics

Stability has a position of utmost importance in thermodynamics. The laws of

thermodynamics mostly describe systems that have achieved a ‘steady state’, i.e.,

are in a stable equilibrium. However, this definition of equilibrium is mostly

statistical and thus cannot be directly implemented for systems with fewer degrees

of freedom. Hence, we must re-evaluate our understanding of equilibrium that

suits the task at hand.

Consider the trajectories generated by a given dynamics of the form u(t, ρ) con-

taining the state ρ at time t = 0. A state ρe is in equilibrium when u(t, ρe) = ρe

for all t, or in other words dρ
dt

= 0. We use a metric to define distance function

d(x, y) in the state space as follows
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1. d(x, y) = 0 only when x = y,

2. d(x, y) ≥ 0 for all x, y,

3. d(x, z) + d(z, y) ≥ d(x, y) for any triplet x, y, z (triangle inequality),

4. d(x, y) = d(y, x).

Let us begin with the second law of thermodynamics, the following statement is

inspired by Hatsopoulos-Keenan statement [25], and the Kelvin-Planck, Clausius,

and Carathéodory statements follow from this [78].

The second law of thermodynamics: There exists a unique globally

stable equilibrium state among all the states of a system for a given

value of the energy, number of constituents, and the parameters of the

Hamiltonian.

It is well understood that thermodynamic equilibrium is the Lyapunov locally

stable equilibrium. We begin with Lyapunov equilibrium [13, 15, 31, 79]. The

Lyapunov local stability condition is given as follows-

Definition 2.3.1. Consider an equilibrium state, ρe. It is locally stable if and

only if for every ϵ > 0 we can find a δ(ϵ) > 0 such that d(ρ, ρe) < δ(ϵ) implies

d(u(t, ρ), ρe) < ϵ for all t > 0 and ρ.

To expound on the above, any trajectory that passes through ρ which is at a

distance δ(ϵ) from the equilibrium state ρe, cannot go beyond the distance ϵ for

any time t. A nice way of visualizing this is presented in Fig. 2.2.
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2.3 Stability and the second law of thermodynamics

Figure 2.2 A schematic description of different types of equilibrium as discussed in the
text. The trajectories in purple, red, and green denote various trajectories traced by
u(t, ρ) in the state space. Each orbit is denoted by its distance from the equilibrium state
ρe. In the metastable equilibrium case, we can see how originating from two different
distances from the equilibrium state ρe, two trajectories can end up in two different
modes of equilibrium. The red one remains locally stable, while the green one becomes
metastable.

Any state that does not follow Def. (2.3.1) is a locally unstable state. It is

claimed in some literature, that the entropy functional as described in the previous

section is a Lyapunov function [79]. However, that seems not to be the case, partly

because Lyapunov stability excludes metastable states. The other reason is, while
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maximal entropic states are also locally stable, the converse is not always true

[31]. Consider the case of the unitary evolution of pure states, u(t, ρ) = UtρU †
t

with Ut = exp(−iH t) for ℏ = 1. The value of entropy functional is zero, while

these states satisfy the local stability criteria as set by the definition above, they

are not unique. The function d(ρ1, ρ2) = tr |ρ1 − ρ2| will give same distance for

all states ρ at all times t from the equilibrium state ρe| [H , ρe] = 0 implying

d(u(t, ρ), ρe) = d(u(0, ρ), ρe) [31]. One thus needs to assure that other equilibrium

states which might be metastable or limit cycles are not globally stable also. The

chief reason behind such a requirement is the second law of thermodynamics. There

is also the apparent conflict between mechanics and thermodynamics which needs

addressing. The basic statement of a stable equilibrium from the point of view of

mechanics based on the minimum energy principle is [15]

Among all the states of a system consistent with a given set of values

for the numbers of constituents and the parameters of the Hamiltonian,

the state of lowest energy is the only stable equilibrium state.

As we can see, while the second law asks for entropy maximization, mechanics

asks for energy minimization. This paradoxical situation can be resolved once we

consider the pure states to be a subset of all states available to a quantum system.

That is states which satisfy the criteria ρ2 = ρ form what is known as limit cycles,

which while being locally stable are not maximal entropic states. Hence they

satisfy Lyapunov criteria while not being a global equilibrium state. However, by

admitting states of the form ρ2 ̸= ρ one opens up the possibility of accommodating

maximal entropic states, which coincide with the thermodynamic equilibrium state

as well. The Lyapunov definition no longer remains necessary and sufficient for

thermodynamic equilibrium by the second law, it only remains necessary. The

Lyapunov criteria falling short of accommodating these states must be augmented
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2.3 Stability and the second law of thermodynamics

with the definition of global stability and metastability. Which are given as follows

[79]

Definition 2.3.2. An equilibrium state ρe is metastable if and only if it is locally

stable but there is an η > 0 and an ϵ > 0 such that for every δ > 0 there is

a trajectory u(t, ρ) passing at t = 0 between distance η and η + δ from ρe, and

reaching at later time t > 0 some distance further than η + ϵ.

To elaborate, consider a state ρ at t = 0, is at distance between η and η + δ,

implying η < d(u(0, ρ), ρe) < η+δ. If after some time, it is found that the trajectory

lies outside the range η + ϵ, that is d(u(t, ρ), ρe) ≥ η + ϵ, the state has started

veering off from its locally stable trajectory as in Fig. 2.2. This means, while the

states which are already within the distance δ, to begin with, are in the distance ϵ

for all times (locally stable), metastable implies, states that slightly depart from

that distance steer away from the stable orbit. This allows us to define global

stability in the following way,

Definition 2.3.3. An equilibrium state ρe is globally stable if for every η > 0 and

ϵ > 0 there exists a δ(η, ϵ) > 0 such that every trajectory u(t, ρ) that starts within

the distance η and η + δ from ρe, stays within η + ϵ distance from it at all times.

One can see how this connects to the standard definition of global stability, an

equilibrium state is stable if it can be altered into another state by interactions that

leave net effects on the environment.

As we can see from the above discussion, the entropy functional, along with the

entropy non-decrease property, provides a reliable way to reach global equilibrium

states via the second law of thermodynamics. We must ask ourselves at this point,

what do we mean by states in the context of quantum mechanics? Where do the

above-mentioned trajectories find their application? Are these states described
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as the usual states of quantum mechanical formulation? Or do they come with

philosophical implications of their own? Let us find that out in the next section.

2.4 Ontology of states

The search for the true philosophical meaning of a quantum mechanical state is an

age-old problem and has an affinity to drag the questioner into a rabbit hole. This

thesis will try not to indulge in those difficult problems. Yet, given the nature of

the issue under consideration, some mention of the philosophical implications of

the assumptions considered in the SEA formalism must be given, lest we are to

ignore all the nuances of the formalism.

It is to be understood, that the approach to non-equilibrium as envisioned in the

SEA formalism is towards a fundamental nature of decoherence in contrast to

the coarse-grained nature of the same as discussed in Sec 2.1. Hence it is also

important to observe that the states discussed in the context of SEA are not

outcomes of measurement statistics of an ergodic system performed over a long

period of time [2]. One must also acknowledge the fact that it is not possible

in quantum mechanics to predict which eigenvalue a single measurement will

yield. Hence, it may be concluded that the outcomes of some or all measurements

performed on a given system are going to be irreducibly dispersed. That is why

we deal with averages when talking about the value of a property of a quantum

system. This implies that there is an epistemic rule of correspondence [5, 26],

by which physical conditions of a state are experimentally known only through

repeated measurements performed on replicas of the same prepared in a particular

way. This suggests that the preparation procedure of a state needs to be specified

and uniquely associated with it before studying any quantal evolution of the same.

This requirement is peculiar to quantum mechanics [5].
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A density matrix ρ is used to express the probability distribution associated with

measurement corresponding to a given preparation. A density matrix thus produced

can be pure ρ2 = ρ, or mixed ρ2 ̸= ρ. While there is no ambiguity regarding the

ontological status of the pure states, it is the mixed states that are mostly in a

pickle. The dominant narrative is that mixed states are a convex combination of

pure states and the weighted sum implies epistemic ignorance. However, this idea

is contested by Park, Hatsopoulos, Beretta and colleagues [5, 15, 25, 26]. In their

point of view, if a preparation results in a mixed state, then the mixed density

matrix is the true representation of the state. Park also argued [26] that a ρ can be

numerically subdivided into infinite many combinations of pure and mixed states,

thus one can represent our ‘ignorance’ in so many ways. All of these combinations

will have the following format (each ρk can be mixed or pure),

for 0 ≤ wk ≤ 1, ρ =
∑

k

wkρk, with
∑

k

wk = 1. (2.20)

Such a statement begs another set of questions, can we set up a procedure through

which we can operationally distinguish between preparations (Z1) that are due to

epistemic ignorance and result in a ‘mixture’ of pure states and preparations (Z2)

that are genuinely mixed? Hatsopoulos et. al. [5] answer this in positive. They

provide one of the first hints of contextual and non-contextual preparations [5].

Instead of delving into the details, we can with certain confidence conclude that

the preparations of the former type, Z1 can be treated with information-theoretic

tools, while the latter type requires a more fundamental approach.

This is where the ontological status of the state in the context of SEA gets cemented.

We present the following hypothesis [15, 77] which together with the second law of

thermodynamics as stated in Sec. 2.3 sets the ground for the inclusion of a fourth

postulate in the scheme of quantum evolution as will be discussed later in this
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chapter.

Ontological state hypothesis: A density matrix can be used to rep-

resent the evolution of a single particle. Moreover, both pure and mixed

state density matrices are real ontological objects. Mixed state density

matrices are not merely a result of epistemic ignorance represented

through a mixture of pure states.

Before concluding this section, we must acknowledge in the vein of Ref. [19]

that there is more than one way of preparing a mixed density operator. Each

of those preparations bears a physically different meaning. However, if no local

measurement can distinguish between those preparations, it can be safely said

that irrespective of their origin, operationally those density matrices are physically

equivalent.

2.5 The four postulates

Now that we have discussed the second law of thermodynamics, the role of the

entropy functional in identifying the globally stable state, and the meaning of those

states, it is about time that we bring all of these together in a coherent fashion.

The introduction of the second law in the context of QM takes place through the

equilibrium state postulate that we will discuss below. Before, we proceed, for the

sake of continuity we will revisit the postulates of the Schrödinger-von Neumann

theory of unitary dynamics as well.

I. The correspondence postulate

Observables are represented by some linear Hermitian operators defined on a Hilbert

space where the quantum mechanical states reside. Some of these operators represent

physical observables.
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A note on the wording. Some operators are not necessarily Hermitian (PT symmetry

case with non-Hermitian operators [80]). While most of the operators are physical

observables, not all physical observables are operators, for example, temperature

[2].

II. The mean-value postulate

We can associate a real linear functional ⟨P⟩ of the Hermitian operators P, such

that for every ensemble of measurements performed on unambiguously prepared

copies of a system, ⟨P⟩ is the average of P operations.

It can be shown [2–5] that using the above two postulates, ρ, the density matrix

can be used as a representation of state with unit trace and positive semidefinite

structure.

III. The dynamical postulate

For a reversible process the time evolution of the density operator is given by the

Schrödinger-von Neumann equation of motion as given below

dρ

dt
= − i

ℏ
[H , ρ]. (2.21)

Where ℏ is the reduced Planck’s constant, and H is the Hamiltonian operator.

IV. The stable equilibrium postulate

Any independent separable system has a unique stable equilibrium state which is

fixed by a given value of energy, number of constituents, and other parameters of

the Hamiltonian.

The second law is included in the QM picture via this postulate. As we can see,

the existence of an accessible globally stable equilibrium state means that now
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we can theorize and formulate how quantum states will evolve towards that state.

This will be the main focus of the steepest entropy ascent ansatz, which will be

discussed in the next section.

2.6 Steepest entropy ascent

We begin by stating the steepest entropy ascent (SEA) ansatz, which is based on

the ontological state hypothesis, the second law of thermodynamics presented as

the fourth postulate and is given below [81]-

Steepest entropy ascent ansatz: for a given system (closed or open),

there exists a globally unique stable equilibrium state ρe (from the

second law). Any other state evolves towards ρe under given constraints

of motion such that the local entropy production rate is maximum,

and it does so in the direction of the gradient of the entropy functional

(steepest ascent).

In what follows, we will see how the SEA ansatz gives rise to a new equation

of motion which in some sense is a generalized version of the KSGL equation

discussed above in Eq. (2.1). In the following section, we will discuss the geometric

interpretation of the SEA equation of motion (EoM).

To find the SEA EoM we begin with the state operator ρ, we follow Refs. [17, 81].

To maintain the positivity of ρ at all times, we consider γ = √
ρ to construct the

EoM. Later we will see that the final EoM includes only ρ. This γ is an element of

the linear manifold L , a state space of the Hilbert space H . One can define a

symmetric inner product of the linear operators (not necessarily Hermitian) defined

by (A | B) = tr
(
A†B + B†A

)
/2. We have,

ρ = γγ†. (2.22)
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Consider the generators of motion by elements of the set {Ci(γ)}. Each of these

Ci represents various generators, for example, Hamiltonian (H ), probability (I ),

number operators (N ), and so on. We use the entropy functional (S) as defined

in Sec. 2.2. The functional derivative of Ci, S with respect to the change in γ is

denoted by

Ψi = δCi(γ)
δγ

Φ = δS
δγ

.

(2.23)

To formulate the steepest entropy path, we need to set the constraints of the motion.

They are entropy non-decrease, energy conservation, probability conservation, etc.

Denoting Πγ = dγ
dt

, we can use the following equation to express the constraints

dS
dt

= ΠS with ΠS = (Φ | Πγ) ≥ 0
dCi

dt
= ΠCi

with ΠCi
= (Ψi | Πγ) = 0.

(2.24)

The evolution of γ in time (γ̇) has two principal components, one due to the pure

unitary Hamiltonian evolution (γ̇H), and the other is due to dissipative motion

(γ̇D) that can be written as [15],

γ̇ = γ̇H + γ̇D. (2.25)

The pure unitary Hamiltonian evolution follows Schrödinger equation of motion

γ̇H = − i
ℏ

Hγ. (2.26)

To figure out the dissipative part, we need SEA formalism. As we have seen so far,

constraints play an important role in determining the trajectory of SEA motion.
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However, one needs to associate a metric to the manifold L so that the distance

function can be determined. Besides, a metric will allow us to fix the norm of the

γ̇ so that we can focus only on variation in direction. Let us consider the metric

given as G(γ), this allows us to write a small line segment in the state space as

dl =
√

(Πγ | G(γ) | Πγ). (2.27)

Hence, using the norm constraint, and the constraints of Eq. (2.24), we can in-

voke Lagrange’s multiplier method to write down the following Lagrangian type

functional

Υ = ΠS −
∑

i

βiΠCi
− τ

2 (Πγ | G(γ) | Πγ) . (2.28)

We have used βi and τ as Lagrange’s multipliers independent of Πγ. Now we will

use the calculus of variation to minimize the Lagrangian Υ about the variations

with respect to Πγ by taking functional derivative as under (to distinguish from

QM states, instead of the Dirac ket, we use the |·) for SEA states and functions on

states)
δΥ
δΠγ

= |Φ) −
∑

i

βi |Ψi) − τG |Πγ) . (2.29)

Using the criteria, δΥ/δΠγ = 0, we get the following equation for Πγ = γ̇D,

|Πγ) = 1
τ

G−1
(

Φ −
∑

i

βiΨi

)
. (2.30)

Next, we assume a metric of the form G(A) = 1
τ
L−1A where L is a positive definite

hermitian operator, and clearly G−1(A) = τLA and G−1(A)† = τA†L. Let us look
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at the expressions for |Φ) and |Ψi) [15, 17, 81]

|Ψi) = |2Ciγ)

|Φ) =
∣∣∣−2kB

(
ln γγ† + I

)
γ
)

.

(2.31)

Now looking at the dissipative part of the motion, we get the following relation

from Eq. (2.22), and (2.25),

dρD

dt
= Πγγ† + γΠγ† . (2.32)

Now if we insert the expressions from Eq. (2.31) into Eq. (2.30), we get,

Πγ = −2L
(

kB(ln γγ† + I )γ +
∑

i

βiCiγ

)
. (2.33)

Using this along with Eq. (2.32), we get

dρD

dt
= − 2

[
kBL(ln

(
γγ†

)
)γγ† +

∑
i

βiL(Ci)γγ† + kBLγγ†

+kBγγ†L + kBγγ† ln
(
γγ†

)
L +

∑
i

βiγγ†CiL
]

.

(2.34)

Identifying γγ† = ρ, we can rearrange the r.h.s of the Eq. (2.34) to get the following

one,

dρD

dt
= −2

[
kB{L(ln(ρ)), ρ} + kB{L, ρ} +

∑
i

βi(LCiρ + ρCiL)
]

. (2.35)

We now will determine βi, which will allow us to express Eq. (2.35) in a more

aesthetic manner. Using the constraints of Eq. (2.24), with Eq. (2.30) the following

equation is found, ∑
i

(Ψj| L |Ψi) βi = (Ψj| L |Φ) . (2.36)
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Let us consider three generators of motion giving rise to three constraints, and

correspondingly three βs. The Eq. (2.36) thus can be solved using Cramer’s method,

the solution is given below,

Ω =

∣∣∣∣∣∣∣∣∣∣∣∣

(Ψ1 | L | Ψ1) (Ψ1 | L | Ψ2) (Ψ1 | L | Ψ3)

(Ψ2 | L | Ψ1) (Ψ2 | L | Ψ2) (Ψ2 | L | Ψ3)

(Ψ3 | L | Ψ1) (Ψ3 | L | Ψ2) (Ψ3 | L | Ψ3)

∣∣∣∣∣∣∣∣∣∣∣∣
, (2.37)

which must be non-zero for the solution to exist. Then we can have,

β1 = 1
Ω

∣∣∣∣∣∣∣∣∣∣∣∣

(Ψ1 | L | Φ) (Ψ1 | L | Ψ2) (Ψ1 | L | Ψ3)

(Ψ2 | L | Φ) (Ψ2 | L | Ψ2) (Ψ2 | L | Ψ3)

(Ψ3 | L | Φ) (Ψ3 | L | Ψ2) (Ψ3 | L | Ψ3)

∣∣∣∣∣∣∣∣∣∣∣∣
, (2.38)

β2 = 1
Ω

∣∣∣∣∣∣∣∣∣∣∣∣

(Ψ1 | L | Ψ1) (Ψ1 | L | Φ) (Ψ1 | L | Ψ3)

(Ψ2 | L | Ψ1) (Ψ2 | L | Φ) (Ψ2 | L | Ψ3)

(Ψ3 | L | Ψ1) (Ψ3 | L | Φ) (Ψ3 | L | Ψ3)

∣∣∣∣∣∣∣∣∣∣∣∣
, (2.39)

β3 = 1
Ω

∣∣∣∣∣∣∣∣∣∣∣∣

(Ψ1 | L | Ψ1) (Ψ1 | L | Ψ2) (Ψ1 | L | Φ)

(Ψ2 | L | Ψ1) (Ψ2 | L | Ψ2) (Ψ2 | L | Φ)

(Ψ3 | L | Ψ1) (Ψ3 | L | Ψ2) (Ψ3 | L | Φ)

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.40)

On column rearrangement, we get:

β2 = − 1
Ω

∣∣∣∣∣∣∣∣∣∣∣∣

(Ψ1 | L | Φ) (Ψ1 | L | Ψ1) (Ψ1 | L | Ψ3)

(Ψ2 | L | Φ) (Ψ2 | L | Ψ1) (Ψ2 | L | Ψ3)

(Ψ3 | L | Φ) (Ψ3 | L | Ψ1) (Ψ3 | L | Ψ3)

∣∣∣∣∣∣∣∣∣∣∣∣
, (2.41)
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and,

β3 = 1
Ω

∣∣∣∣∣∣∣∣∣∣∣∣

(Ψ1 | L | Φ) (Ψ1 | L | Ψ1) (Ψ1 | L | Ψ2)

(Ψ2 | L | Φ) (Ψ2 | L | Ψ1) (Ψ2 | L | Ψ2)

(Ψ3 | L | Φ) (Ψ3 | L | Ψ1) (Ψ3 | L | Ψ2)

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.42)

We can assume L = 1
4kBτ

I , I for Fisher-Rao metric[81], kB to handle scaling of the

entropy term, and 4 as a constant scaling factor. To find a more explicit solution

let us note the following

(Ψi | L | Φ) = − 1
τ

(
tr
(

ρ
1
2{Ci, ln(ρ)}

)
+ tr

(1
2{Ci, ρ}

))
(Ψi | L | Ψj) = 1

kBτ
tr
(

ρ
1
2{Ci, Cj}

)
.

(2.43)

Using this expression in Eqs. (2.37), (2.38), (2.41), and in (2.42) we get,

Ω = 1
(kBτ)3

∣∣∣∣∣∣∣∣∣∣∣∣

tr
(

ρ
2{C1, C1}

)
tr
(

ρ
2{C1, C2}

)
tr
(

ρ
2{C1, C3}

)
tr
(

ρ
2{C2, C1}

)
tr
(

ρ
2{C2, C2}

)
tr
(

ρ
2{C2, C3}

)
tr
(

ρ
2{C3, C1}

)
tr
(

ρ
2{C3, C2}

)
tr
(

ρ
2{C3, C3}

)

∣∣∣∣∣∣∣∣∣∣∣∣
, (2.44)

β1 = − 1
k2

Bτ 3Ω

∣∣∣∣∣∣∣∣∣∣∣∣

tr
(

ρ
2{C1, ln(ρ) + I}

)
tr
(

ρ
2{C1, C2}

)
tr
(

ρ
2{C1, C3}

)
tr
(

ρ
2{C2, ln(ρ) + I}

)
tr
(

ρ
2{C2, C2}

)
tr
(

ρ
2{C2, C3}

)
tr
(

ρ
2{C3, ln(ρ) + I}

)
tr
(

ρ
2{C3, C2}

)
tr
(

ρ
2{C3, C3}

)

∣∣∣∣∣∣∣∣∣∣∣∣
, (2.45)

β2 = 1
k2

Bτ 3Ω

∣∣∣∣∣∣∣∣∣∣∣∣

tr
(

ρ
2{C1, ln(ρ) + I}

)
tr
(

ρ
2{C1, C1}

)
tr
(

ρ
2{C1, C3}

)
tr
(

ρ
2{C2, ln(ρ) + I}

)
tr
(

ρ
2{C2, C1}

)
tr
(

ρ
2{C2, C3}

)
tr
(

ρ
2{C3, ln(ρ) + I}

)
tr
(

ρ
2{C3, C1}

)
tr
(

ρ
2{C3, C3}

)

∣∣∣∣∣∣∣∣∣∣∣∣
, (2.46)

β3 = − 1
k2

Bτ 3Ω

∣∣∣∣∣∣∣∣∣∣∣∣

tr
(

ρ
2{C1, ln(ρ) + I}

)
tr
(

ρ
2{C1, C1}

)
tr
(

ρ
2{C1, C2}

)
tr
(

ρ
2{C2, ln(ρ) + I}

)
tr
(

ρ
2{C2, C1}

)
tr
(

ρ
2{C2, C2}

)
tr
(

ρ
2{C3, ln(ρ) + I}

)
tr
(

ρ
2{C3, C1}

)
tr
(

ρ
2{C3, C2}

)

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.47)
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One can do elementary operations on the columns of the determinants in Eqs. (2.45)-

(2.47), and then consider the scaling Ω = 1
(kτ)3 Ω to get the following expressions

for β

β1 = − 1
k2

Bτ 3Ω

∣∣∣∣∣∣∣∣∣∣∣∣

tr
(

ρ
2{C1, ln(ρ)}

)
tr
(

ρ
2{C1, C2}

)
tr
(

ρ
2{C1, C3}

)
tr
(

ρ
2{C2, ln(ρ)}

)
tr
(

ρ
2{C2, C2}

)
tr
(

ρ
2{C2, C3}

)
tr
(

ρ
2{C3, ln(ρ)}

)
tr
(

ρ
2{C3, C2}

)
tr
(

ρ
2{C3, C3}

)

∣∣∣∣∣∣∣∣∣∣∣∣
,

= −kBβ1,

(2.48)

β2 = 1
k2

Bτ 3Ω

∣∣∣∣∣∣∣∣∣∣∣∣

tr
(

ρ
2{C1, ln(ρ)}

)
tr
(

ρ
2{C1, C1}

)
tr
(

ρ
2{C1, C3}

)
tr
(

ρ
2{C2, ln(ρ)}

)
tr
(

ρ
2{C2, C1}

)
tr
(

ρ
2{C2, C3}

)
tr
(

ρ
2{C3, ln(ρ)}

)
tr
(

ρ
2{C3, C1}

)
tr
(

ρ
2{C3, C3}

)

∣∣∣∣∣∣∣∣∣∣∣∣
,

= kBβ2,

(2.49)

β3 = − 1
k2

Bτ 3Ω

∣∣∣∣∣∣∣∣∣∣∣∣

tr
(

ρ
2{C1, ln(ρ)}

)
tr
(

ρ
2{C1, C1}

)
tr
(

ρ
2{C1, C2}

)
tr
(

ρ
2{C2, ln(ρ)}

)
tr
(

ρ
2{C2, C1}

)
tr
(

ρ
2{C2, C2}

)
tr
(

ρ
2{C3, ln(ρ)}

)
tr
(

ρ
2{C3, C1}

)
tr
(

ρ
2{C3, C2}

)

∣∣∣∣∣∣∣∣∣∣∣∣
,

= −kBβ3.

(2.50)

We use the scaled β to write Eq. (2.35) in the following way,

dρD

dt
= −1

τ

[
ρ ln(ρ) + 1

2
∑

i

(−1)iβi{Ci, ρ}
]

. (2.51)

Using Lagrange’s multiplier (βi) thus expressed in Eqs. (2.48)- (2.50), along with Ω
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2.6 Steepest entropy ascent

in Eq. (2.51), and little algebra, we get the following compact form (ℏ, kB = 1).

dρ

dt
+ i[H, ρ] =

− 1
τ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Bρ ln(ρ) 1
2{C1, ρ} 1

2{C2, ρ} 1
2{C3, ρ}

tr
(

ρ
2{C1, B ln(ρ)}

)
tr(ρC 2

1 ) tr
(

ρ
2{C1, C2}

)
tr
(

ρ
2{C1, C3}

)
tr
(

ρ
2{C2, B ln(ρ)}

)
tr
(

ρ
2{C2, C1}

)
tr(ρC 2

2 ) tr
(

ρ
2{C1, C3}

)
tr
(

ρ
2{C3, B ln(ρ)}

)
tr
(

ρ
2{C3, C1}

)
tr
(

ρ
2{C3, C2}

)
tr(ρC 2

3 )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

tr
(

ρ
2{C1, C1}

)
tr
(

ρ
2{C1, C2}

)
tr
(

ρ
2{C1, C3}

)
tr
(

ρ
2{C2, C1}

)
tr
(

ρ
2{C2, C2}

)
tr
(

ρ
2{C2, C3}

)
tr
(

ρ
2{C3, C1}

)
tr
(

ρ
2{C3, C2}

)
tr
(

ρ
2{C3, C3}

)

∣∣∣∣∣∣∣∣∣∣∣∣

.

(2.52)

Where we have used the Eq. (2.21) to write the Hamiltonian evolution part. This

equation was first introduced by Beretta in Ref. [29]. Hence, we will call it Beretta

SEA EoM (BSEA). On the other hand, by not explicitly expressing βs and using

Eq. (2.52), we write the BSEA evolution equation of motion in the nice form as

under,
dρ

dt
= −i[H , ρ] − 1

τ

[
Bρ ln(ρ) + 1

2
∑

i

(−1)iβi{Ci, ρ}
]

(2.53)

If we compare Eq. (2.1) and (2.53), we can see the latter does not contain terms of

the form V †
j ρVj, which populates zero eigenvalued states. And instead, the BSEA

equation contains terms involving ln(ρ) which considers the contribution due to the

entropy non-decrease principle. To restrict the evolution to non-zero eigenvalued

subspace of ρ, an operator B is introduced which is diagonal in the eigenbasis of ρ

and is constructed by substituting each non-zero eigenvalues of ρ by one. Thus,

one avoids a major issue (preservation of rank space of ρ) with KSGL formalism

while maintaining a nonlinear evolution of ρ. A very convenient way of writing the
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Chapter 2 Steepest Entropy Ascent

above equation is through the introduction of the following operator

D = 1
2τ

(
B ln(ρ) +

∑
i

(−1)iβiCi

)
, (2.54)

B is a diagonal operator formed by substituting the nonzero eigenvalues of ρ with

ones. We get
dρ

dt
= −i[H , ρ] − {D, ρ}. (2.55)

Thus endeth our derivation of the SEA EoM. In what follows, we will discuss the

geometric interpretation of the above formalism.

2.7 A Geometric construction

An attempt at deriving a nonlinear version of Schrödinger equation which ap-

proximates the Lindbladian evolution equation was taken up by Gisin et. al. on

geometric grounds [36]. There the flow generated by δρt was projected onto the

subspace of the Bloch sphere to find the two components of motion, one dissipative

and one due to the Hamiltonian evolution. However, this approach was more of a

heuristic way to find relevant nonlinear extensions of QM and was not rigorously

pursued further. Whereas, SEA formalism is mostly based on geometric grounds,

making it more appealing. But before proceeding with the interpretation, we must

lay down some logic and terminology required to appreciate the picture as in Fig.

2.3.

Consider a set of vectors {v0,v1, · · · ,vn} and the linear manifold spanned by their

real linear combinations as L(v0,v1, · · · ,vn). Given some other vector u not in L,

let uL denote the orthogonal projection onto L, such that for any vector v in L, we

have [15]

v · uL = v · u. (2.56)
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2.7 A Geometric construction

The projection of u onto L can be expressed using Gram matrix as

uL =
r∑

i,j

(u · hi)[G]−1
ij hj, (2.57)

where, {h1, · · · ,hr}, for r ≤ n span L, and G is the Gram matrix given as under

G =


h1 · h1 · · · hr · h1

... . . . ...

h1 · hr · · · hr · hr

. (2.58)

Because the set of vectors, {hr} is composed of linearly independent vectors, the

determinant, det(G) is strictly positive. We can find the component of u orthogonal

to L via the relation

u⊥L = u − uL. (2.59)

As mentioned in Ref. [15], there exists a second method of finding the projection,

given as the ratio of two determinants,

uL = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 h1 · · · hr

u · h1 h1 · h1 · · · hr · h1

... ... . . . ...

u · hr h1 · hr · · · hr · hr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h1 · h1 · · · hr · h1

... . . . ...

h1 · hr · · · hr · hr

∣∣∣∣∣∣∣∣∣∣∣∣

. (2.60)

47



Chapter 2 Steepest Entropy Ascent

Using Eq. (2.59) and (2.60), we get,

u⊥L =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u h1 · · · hr

u · h1 h1 · h1 · · · hr · h1

... ... . . . ...

u · hr h1 · hr · · · hr · hr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h1 · h1 · · · hr · h1

... . . . ...

h1 · hr · · · hr · hr

∣∣∣∣∣∣∣∣∣∣∣∣

. (2.61)

Figure 2.3 A geometric interpretation of the SEA EoM.

A comparative study of Eq. (2.52) with (2.61) reveals the underlying geometric

structure clearly. We can consider the linear manifold spanned by the vectors |Ψi)

as L. The functional |Φ) = δS/δγ acts as u whose component perpendicular to

the manifold L is the one that drives the diffusion rate equation. In Fig. 2.3, we

see a short arrow lying in the direction of the |Φ)⊥L. This is due to the norm
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2.8 The relaxation time

fixing of Πγ as given by Eq. (2.27). The Lagrange’s multipliers βi turn out to be

the components of the projection of |Φ) onto each of the vectors |Ψi). The sum of

these projections form the green vector on the greenish manifold in Fig. 2.3. The

vector difference between |Φ), and this sum is the perpendicular vector lying in the

purplish manifold orthogonal to the greenish one. Thus we can construct a vector

that seeks out the direction of the gradient that is orthogonal to the manifold

spanned by the constraints of motion [17, 81]. This construction is at the heart of

the SEA approach.

2.8 The relaxation time

The system relaxation time (τ) is the most difficult of the Lagrange multipliers

to address in the SEA EoM. The relaxation time associated with the system is

represented by τ . It is related to the pace of evolution of the state operator, as

stated in the literature [15, 17, 21, 22, 81]. Using a Fisher-Rao metric, which

becomes a uniform metric in probability space, one may get the following expression

from Eq. (2.27).
dl

dt
= 2

√
γ̇D · γ̇D = ϵ̇. (2.62)

Here ϵ̇ is a small positive number, which fixes the norm of Πγ and maximizes the

direction as a consequence [17]. From the evolution equation of state operator γD,

we have,

γ̇D = |Πγ) = 1
τ

∣∣∣∣∣Φ −
∑

i

βiCi

)
. (2.63)

49



Chapter 2 Steepest Entropy Ascent

Using these two and defining |Λ) as an affinity vector that draws the motion

towards SEA evolution, one can write the following expressions involving τ [81]

τ =

√
(Λ | Λ)

ϵ̇
,

=

(
Φ −∑

i βiCi | Ĝ−1 | Φ −∑
i βiCi

)
ΠS

.

(2.64)

τ is also inversely related to the rate of entropy formation. As a result, with greater

τ , we will witness less entropy creation and dissipation; the system does not relax

rapidly since the speed is high. In the event of low τ values, the system will relax

faster and entropy formation will be increased. Both these τ characteristics are

examined in this thesis in chapters 3 and 4. As can be seen, τ is reliant on ρ, but

as the literature suggests, constant non-zero τ can also be useful in revealing the

characteristics of the general motion.

Summary

We have begun this chapter with a brief overview of the phenomenological modeling

of decoherence via the application of a Lindblad-type master equation. We com-

mented on some of the shortcomings of this formalism which acted as motivation

for using the SEA formalism. Thereafter, we introduce and derive the form of the

entropy functional from the principle of reversible and irreversible processes as a

fundamental property of such evolution. We then discuss the concept of stability as

understood in the context of SEA, and rephrase the second law of thermodynamics.

Furthermore, we present a discussion on the ontic status of the mixed states on a

level similar to that of pure states in the von Neumann formalism. This provides

us the necessary background to state the postulates of quantum mechanics and

state the steepest entropy ascent ansatz. We then derive the Beretta SEA equation
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of motion for a single constituent of matter. We have also provided a geometric

backdrop to embed the concept of SEA evolution. Finally, we present our remarks

on the nature and role of the relaxation time parameter.
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SEA in a Two-level System
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The rising sun above the sea,
smothered the duality in me

while its shimmering rays of hope,
sent my doubts flying.





3.1 The Bloch sphere

Our discussion in the previous chapter demonstrated that the steepest

entropy ascent (SEA) formalism maximizes local entropy production in

an isolated system, thus producing ‘spontaneous decoherence’ adhering

to the second law of thermodynamics. However, unless we consider some simple

physical systems and apply the SEA principle, we won’t be able to appreciate the

robustness of the approach, therefore will miss out on the physical implications

of the same. The simplest possible case to study such a nonlinear evolution is

the two-level system, a qubit. In this chapter, we will consider the qubit and its

evolution under SEA. We will first present the exact analytical solution, followed

by a scalable yet approximated analytical solution. We will conclude the chapter

by comparing these results with full numerical results.

3.1 The Bloch sphere

A general two-level system can be represented by a parametrized form of the

density matrix ρ. In this form, a vector r is associated with ρ, such that r is the

radial vector of a Riemann sphere. In literature, this representation is also known

as the Bloch sphere representation [61]. Each point of this sphere is a valid state,

the points on the surface represent idempotent states, ρ2 = ρ, while those on the

inside represent mixed-density matrices. As the general two-level system can be

represented by the generators of SU(2) algebra, we get the following representation

ρ = 1
2 (I + r · σ) . (3.1)

Where σ is the Pauli vector comprised of three traceless 2 × 2 matrices given as

follows

σ1 =

0 1

1 0

, σ2 =

0 −i

i 0

, σ3 =

1 0

0 −1

. (3.2)
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Chapter 3 SEA in a Two-level System

Figure 3.1 Bloch sphere representation of a two-level system. The purple arrow denotes
the Bloch vector r, while the vector along the precession axis for Hamiltonian is denoted
by h using a green arrow. Isoentropic and constant energy surfaces are appropriately
labeled. Image is taken from [81].

One can see from Eq. (3.1), if r = 0, we get ρ = 1
2I , which is the maximally mixed

state. Thus at the center of the Bloch sphere lies the state with maximum entropy,

the value of which is given by, using Eq. (2.19), S = k ln(2). In this form, the

eigenvalues of ρ are

λ± = 1 ± r

2 . (3.3)

The entropy thus computed has the following dependence on the magnitude r of r,

S = − k [λ+ ln(λ+) + λ− ln(λ−)] ,

= − k
[1 + r

2 ln
(1 + r

2

)
+ 1 − r

2 ln
(1 − r

2

)]
.

(3.4)

From Eq. (3.4), it is evident that the entropy function is zero on the surface r = 1.

It is also clear that the constant entropic surfaces are formed by concentric balls

within the Bloch sphere as shown in Fig. 3.1. We also have tr ρ = 1, and denoting

tr ρ2 = R, one can write

r =
√

2R − 1, (3.5)
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3.2 Exact analytical solution

implying 0 ≤ r ≤ 1, for 1
2 ≤ R ≤ 1.

Similarly, the most general Hamiltonian acting on a point on the sphere can be

written as

H = (ω0I + ωh · σ) . (3.6)

We identify h as the unit vector in the direction of the axis of rotation induced by

H . We also note the eigenvalues of H are as under

h± = ω0 ± ω, with ω0 = 1
2 tr H . (3.7)

The precession frequency is 2ω. As Fig. 3.1 shows, for a fixed entropy (fixed r),

the radius vector traces out path along circles perpendicular to h (constant energy

surfaces).

3.2 Exact analytical solution

The exact analytical solution to the two-level system was given by Gian Paolo

Beretta [7]. Before we discuss that here, let us note that for a single particle, only

two constraints i.e., that of energy and probability conservation are required. This

reduces the BSEA equation of motion Eq. (2.52) in the following expression,

dρ

dt
+ i[H , ρ] = −1

τ

∣∣∣∣∣∣∣∣∣∣∣∣

ρ ln(ρ) ρ 1
2{ρ, H}

tr(ρ ln(ρ)) 1 tr(ρH )

tr(ρH ln(ρ)) tr(ρH ) tr(ρH 2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 tr(ρH )

tr(ρH ) tr(ρH 2)

∣∣∣∣∣∣∣∣
. (3.8)

Because of the constant energy criteria, the Bloch vector r is constrained to rotate

in a plane at a distance re = h · r from the center about h, see the red dotted
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Figure 3.2 A schematic for showing re = h · r.

circled trajectory in Fig. 3.2. The overall SEA motion will drag r towards h such

that re remains unchanged. Given the definition of ρ, and H above, we compute

the trace relations below [81]

tr(ρ) =1,

tr(ρH ) = (ω0 + ωre) ,

tr
(
ρH 2

)
=
((

ω2 + ω2
0

)
+ 2ω0ωre

)
,

tr(ρ ln(ρ)) =1
2

(
ln
(

1 − r2

4

)
+ r ln

(1 + r

1 − r

))
,

tr(ρH ln(ρ)) =ω0

2

(
ln
(

1 − r2

4

)
+ r ln

(1 + r

1 − r

))

+ ω

2

(
ln
(

1 − r2

4

)
+ 1

r
ln
(1 + r

1 − r

))
re.

(3.9)

Using these traces, we can find the expressions for Lagrange’s multipliers using
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3.2 Exact analytical solution

Eq. (2.48), and (2.49) with two constraints. Note, Ω = tr(ρH 2) − (tr(ρH ))2. We

have

β1 = 1
Ω
[
tr(ρ ln ρ) tr

(
ρH 2

)
− tr(ρH ln ρ) tr(ρH )

]
,

β2 = 1
Ω [tr(ρ ln ρ) tr(ρH ) − tr(ρH ln ρ)] .

(3.10)

Let us denote the following,

A =
(

ln
(

1 − r2

4

)
+ r ln

(1 + r

1 − r

))
,

B =
(

ln
(

1 − r2

4

)
+ 1

r
ln
(1 + r

1 − r

))
.

(3.11)

Using Eqs. (3.9), (3.10), and (3.11), we get

βI ≡ β1 = 1
2ω2 (1 − r2

e)

[
ω2
[
A − r2

eB
]

+ ωω0 [A − B]
]
, (3.12)

βH ≡ β2 = re

2ω (1 − r2
e) [A − B] . (3.13)

Next, we find the expressions for the commutation and anti-commutations given

as under

[H , ρ] = iω (h× r) · σ,

{H , ρ} = (ω0 + ωre) I + (ω0r + ωh) · σ,

{ln(ρ), ρ} = 1
2AI + 1

2Br · σ.

(3.14)

Now that we have gathered all the necessary expressions, let us recall Eq. (2.53),

and employ them for the dissipative part as follows,

d(r − re)
dt

= − 1 − r2

2τ(1 − r2
e) ln

(1 + r

1 − r

)(r − re)
r

. (3.15)
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In writing the above differential equation, we have used dρ
dt

= 1
2

dr
dt
·σ, and re = reh.

If we confine the motion on the equatorial plane perpendicular to the vector h on

the Bloch sphere, we get re = 0, see Fig. 3.2. Setting this, we have the following

equation [7, 81],
dr

dt
= − 1

2τ
(1 − r2) ln

(1 + r

1 − r

)
. (3.16)

The solution to the above equation is given as (r0 ≡ r(0) = ε),

rt = tanh
[1
2 exp

(
− t

τ

)
ln
(1 + ε

1 − ε

)]
. (3.17)

Since this solution was first given by Beretta, we will refer to this solution as the

Gian Paolo Beretta (GPB) solution.

3.3 Fixed Lagrange’s multiplier method

The GPB solution, without any doubt, is elegant and exact. However, it cannot

be scaled to systems with higher dimensionality (more than two-level systems).

Besides, the GPB solution is not available for re ̸= 0 states, which leaves most of

the Bloch sphere unexplored. As a consequence one resorts to numerical techniques

[20]. While numerical solutions are exact and using current computing resources

doesn’t require much time to be solved, they suffer from two major setbacks.

Firstly, the numerical solutions obscure the interesting features and clues of the

underlying physical implications of the solutions presented. Secondly, as we scale

up in dimensions, and include more complex studies to undertake, these solutions

require a lot of computational resources, which may not be readily available. To

address and resolve this, in a recent work [81], this author developed an approximate

analytical method to solve the SEA EoM for a single particle. The method relies

on fixing the βi’s as used in Eq. (2.53). This means fixing the component of the
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3.3 Fixed Lagrange’s multiplier method

projections on the constraint manifold as discussed in Sec. 2.7. As a result,

we do not get the exact solution, but it has been shown in Ref. [81], in higher

dimensions we get a good agreement with the numerical results. Since one fixes

the βis, i.e., the Lagrange’s multipliers, this solution method is known as the fixed

Lagrange’s multiplier (FLM) scheme. Depending on the region of interest, such

as near equilibrium or far-off equilibrium, one fixes the βis accordingly. Below we

outline the solution via FLM, and then in the next section, we compare FLM with

GPB and numerical results for the two-level system under discussion.

We note that ρt, the density matrix at time t is a unit trace, semi-positive definite

matrix for all t during the evolution of the state, suggesting it can be diagonalized

throughout the process. We can use this property and the following definition

using similarity transformation to go to the diagonal basis of ρt at all times.

Definition 3.3.1. Ut exist at each time instance t which takes ρt to a diagonal

matrix ρd
t as given,

ρt = Utρ
d
t U−1

t . (3.18)

Next, we state and prove a theorem on the first-order time derivative of time-

dependent square matrices,

Theorem 3.3.1. For a time-dependent square matrix A(t), with left and right

eigenvectors as yi and xi, respectively, and corresponding eigenvalue λi, we have,

dλi

dt
= yT

i

dA
dt

xi. (3.19)
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Proof. We note the following facts,

Axi = λixi, (3.20)

yT
i A = λiyT

i , (3.21)

yT
i xj = δij. (3.22)

Combining all of the above, we get the following equation,

yT
i Axi = λi. (3.23)

Taking derivatives on both sides, we get (suppressing the index i),

dyT

dt
Ax + yT dA

dt
x + yTAdx

dt
= dλ

dt
,

dyT

dt
λx + yT dA

dt
x + λyT dx

dt
= dλ

dt
,

λ

[
d(yTx)

dt

]
+ yT dA

dt
x = dλ

dt
.

(3.24)

From the last line, and using Eq. (3.22), we get the main result,

dλi

dt
= yT

i

dA
dt

xi. (3.25)

A direct consequence of the above theorem is the following result,

dA
dt

= YdΛ
dt

XT, (3.26)

where Y and X are created by column-wise stacking the respective eigenvectors,

while Λ = diag [λi]. We note that, in our case of ρt, The 3.3.1 suggests that, Ut = Y,
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and U−1
t = X. Having established this identification, we consider Eq. (2.53) and

multiply it from left and right with U−1
t and Ut respectively. This implies we get

the following equation,

dρd
t

dt
= − 1

2τ

[{
ln
(
ρd

t

)
, ρd

t

}
+
∑

i

(−1)iβi

{
Ci

d, ρd
t

}]
− i

[
H d, ρd

t

]
. (3.27)

In the above equation, we have used H d = U−1
t HUt, and C d

i = U−1
t CiUt. In the

restricted class of problems, for which the eigenbasis of ρ changes solely due to

the Hamiltonian, we can have Ut as constant [81]. In essence, this means that ρ

remains diagonal in the energy basis throughout the evolution. Since most of the

problems encountered in this thesis belong to this special class of problems, we

will focus our attention here.

ρ has a spectral decomposition in its eigenbasis {|λi⟩}, and ρd is diagonal in the

standard basis {|i⟩} (|i⟩ is an N -dimensional unit vector),

ρd =
∑
ij

λiδij |i⟩⟨j| ; and
ρ =

∑
i

λi |λi⟩⟨λi| ,

=
∑
ij

λiδij |λi⟩⟨λj| .

(3.28)

δij is the Kronecker delta. Using these expansions in equation (3.27), and by

choosing
[
H d
]

ij
= Hd

ij, and
[
Cs

d
]

ij
= Cs

ij, the r.h.s of equation (3.27) can be

modified as,

− 1
2τ

∑
ijm

δim

[
2λm ln(λm)δmj +

∑
s

(−1)sβs [λm + λj] Cs
mj

]
|i⟩⟨j|

− i
∑
ij

[λj − λi] Hd
ij |i⟩⟨j| .

(3.29)
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The complete expression upon considering a Euclidean metric reads as

∑
ij

λ̇iδij |i⟩⟨j| = − i
∑
ij

[λj − λi] Hd
ij |i⟩⟨j|

− 1
2τ

∑
ij

[
2λi ln(λi)δij − 2βIλiδij + βH [λj + λi] Hd

ij

]
|i⟩⟨j| .

(3.30)

According to our construction l.h.s of equation (3.27) is diagonal,

dλi

dt
= −1

τ

[
λi ln(λi) − βIλi + βHλiH

d
ii

]
. (3.31)

For diagonal density matrices, similarity transformation is identity, so we get,

dpi

dt
= −1

τ
[pi ln(pi) − βIpi + βHpiHii] , (3.32)

where pi = [ρt]ii. Both the equations (3.31), and (3.32) have a similar type

of solution, namely that of almost identical non-linear ODE. Using standard

techniques and FLM approximation, we arrive at the following expression,

pi(t) = exp
(

exp
(

wi − t

τ

)
+ βI − βHHii

)
. (3.33)

We have wi = ln(ln(p0
i ) − βI + βHHii), where p0

i is the ith diagonal entry of initial ρ.

The solution produced above can be written in a straightforward form, identifying

µc
i = βHHii−βI , or for general cases as∑s(−1)sβsC

s
ii; ṽi = ewi , and µt = exp(−t/τ),

we get,

pi(t) ≡ pt
i = exp

(
ṽiµ

t − µc
i

)
. (3.34)
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3.4 FLM on a qubit

And we find ṽi as,

pi(0) = p0
i , (3.35)

exp
(
ṽiµ

0 − µc
i

)
= p0

i , (3.36)

=⇒ ṽi = ln
(
p0

i

)
+ µc

i . (3.37)

Hence, we can write ρd
t = ∑

i pt
i |i⟩⟨i|. For a general initial ρ with off-diagonal terms

can be written as - ρ = Utρ
d
t U−1

t , whereas if we consider only diagonal ρ’s, we get

ρ = ρd
t . Including the Hamiltonian evolution, we get the following equation for

uniform metric (Ut ≡ exp(−iH t), and projections Pm = |m⟩⟨m|),

ρt = UtUt

(∑
m

exp
(
µt

m − µc
m

)
Pm

)
U−1

t U †
t , (3.38)

where, µt
m = (ln(p0

m) + µc
m) e−t/τ = ṽmµt, and µc

m = ∑
s(−1)sβsC

s
mm. So far, as we

can see, equation (3.38) represents the evolution of ρts diagonal in the energy basis.

Thus we have a general FLM solution for N -level systems. In the next section, we

will apply this to the case of qubits and analyze with respect to numerical solutions

of the Eq. (2.53).

3.4 FLM on a qubit

Since pure states form the limit cycles of the SEA motion, they follow Schrödinger

dynamics. To study the SEA dynamics, one, therefore, quenches the system from

a pure state and prepares it in a mixed state [20].

ρ =ερ0 + (1 − ε) ρu∑
i

λi |λi⟩⟨λi| =
∑

i

ελ0
i

∣∣∣λ0
i

〉〈
λ0

i

∣∣∣+ (1 − ε) I
tr(I) .

(3.39)
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If ρ is diagonal in the ρ0 basis, then

λ′
i = ελ0

i + (1 − ε) 1
N

, (3.40)

where N = tr(I), which for qubit is 2. ε is a variable parameter ∈ [0, 1], with zero

value denoting the completely mixed state. Armed with all these and a Euclidean

metric, we consider Eqs. (3.31), (3.3),

dλ±

dt
= − 1

τ

[
λ± ln(λ±) + (βHHd

± − βI)λ±
]

=⇒ ±ṙ = ∓ 1
τ

[
(1 ± r) ln

(1 ± r

2

)
+ (βHHd

± − βI) (1 ± r)
]
.

(3.41)

After that, we can write for the dissipative part of the motion as before,

rt = − 1 + 2 exp
((

µt
+ − µc

+

))
, for λ+, and

rt =1 − 2 exp
((

µt
− − µc

−

))
, for λ−.

(3.42)

Thence,

rt =
(
exp

(
µt

+ − µc
+

)
− exp

(
µt

− − µc
−

))
, (3.43)

and also,

λ±(t) = exp
(
µt

± − µc
±

)
. (3.44)

Where, µt
± =

(
ln
(
λ′

±

)
+ (βHH± − βI)

)
e− t

τ , λ′ as in equation (3.40). The full

evolution is given by,

Ut

exp
(
µt

+ − µc
+

)
exp

(
µt

− − µc
−

)
U †

t . (3.45)
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3.4 FLM on a qubit

Figure 3.3 Relaxation time dependence decay of the magnitude of the Bloch radius rt

over time. FLM computations using initial ρ to fix the βis are denoted by solid lines,
GPB Eq. (3.17) are plotted using dot-dash, and the direct numerical simulation (NUM)
of Eq. (2.53) are shown in dotted lines. Image cited from Ref. [81].

This solution above in Eq. (3.45) works when we have Lagrange multipliers fixed

using initial conditions i.e., FLM method. Otherwise, in general βi’s depend on

time-dependent r and on constant re = ĥ · r⃗.

Let us now understand the SEA approach through simple well-known, and

well-studied physical conditions. We take ĥ = ẑ, and focus on the states lying on

the equatorial plane of the Bloch sphere, re = 0. H in this scenario becomes ωσz,

which is diagonal in the standard basis. Using the expression for λ′ provided in

equation (3.40), we write down the βi’s as (Eqs. (3.12), and (3.13)),

βI =k

2

[
ln
(

1 − ε2

4

)
+ ε ln

(1 + ε

1 − ε

)]
,

βH = 0.

(3.46)

Let the initial ρ be a |0⟩⟨0| + b |1⟩⟨1|. Then radius r′ after quenching is r′ =
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Chapter 3 SEA in a Two-level System

Figure 3.4 Relaxation time dependence decay of the magnitude of the Bloch radius
rt over time. FLM computations using final ρ to fix the βis are denoted by solid lines,
GPB Eq. (3.17) are plotted using dot-dash, and the direct numerical simulation (NUM)
of Eq. (2.53) are shown in dotted lines. Image cited from Ref. [81].

εr = ε|a − b|. We get, µt
± =

(
ln
(

1±ε
2

)
− βI

)
e− t

τ , and µc
± = βI . And finally, the

evolution equation becomes,

rt =
(
eθt

+ − eθt
−
)

, (3.47)

where, θt
± = µt

± − µc
±.

Using the Eq. (3.47) for ω = 5, and ε = 0.999 (just an arbitrary number close to

one), one can plot the evolution of rt vs time as in Fig. 3.3. In this figure, we

have plotted rt for various values of the relaxation time of the system. In the same

figure, we have also included the GPB solution (Eq. (3.17)), and the numerical

solution (NUM) resulting from solving Eq. (2.53). As we can see from the figure,

FLM results fit nicely within the neighborhood of GPB/NUM solutions. However,

it depends on what kind of initial condition are we basing our FLM computation

on. In Fig. 3.3, we have considered FLM values from the far-off equilibrium region.
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3.4 FLM on a qubit

Meaning, we have computed βis from initial density matrices.

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

400
1
0.1
100

(a)

400
1
0.1
100

(b)

Figure 3.5 (a) τ dependent spirals formed by tracing the state operator in the equatorial
plane of the Bloch sphere as viewed towards Nadir from the North pole. The evolution
has been studied till t = 30. (b) The same spirals are projected onto the surface of
revolution generated from the entropy function in Eq. (3.4). The case with τ = 400
corresponds to the case with ε = 0.5, while the rest of the cases have ε = 0.999. Lower τ

states rise faster, and the lowest has the steepest ascent. Image cited from Ref. [81].

However, if we computed the same using ρu instead, the FLM fit might not

have given such a nice overall behavior, see Fig. 3.4. This suggests the following,

whilst the FLM scheme works nice enough to approximate the exact analytical

solution for the two-level case, and is not limited by special conditions such as

being restricted to the equatorial plane of the Bloch sphere, care must be taken as

to what values we are considering for computing the βis in FLM. For example, if

71



Chapter 3 SEA in a Two-level System

our interest is in observing equilibrium behavior better, we should go with FLM

computed using ρu as in Fig. 3.4. Although, for a better approximation of far from

equilibrium behavior, FLM at some initial ρ seems to do a better job, see Fig. 3.3.

As evident from the form of the general dynamical Eq. (2.55), τ acts as modulating

factor, where high τ results in a smaller dissipation contribution. Besides, system

relaxation time τ is inversely proportional to the rate of entropy production as

in Eq. (2.64). Following a quenching process, the system relaxes and could either

thermalize or localize. This behavior is dependent mainly on the speed at which

this happens. Higher τ implies slower relaxation, while as commented in literature,

lower positive values of τ result in the steepest ascent of entropy, as we see in

Fig. 3.5 which is due to faster relaxation. In the expression of µt Eq. (3.33),

the exponent has (−t
τ

) dependence, which implies in t
τ

<< 1 we will have a

non-dissipative feature, and at t
τ

∼ 1, we will have the desired dissipation.

From Fig. 3.3, we see higher τ valued states will have more delayed and gradual

relaxation. We show the spiraling motion to the center of the Bloch sphere on the

equatorial plane in Fig. 3.5(a). Here, we see that high τ states remain near the

pure states for a longer time than low-valued ones, as they almost instantaneously

mix to the maximum entropic state. These low values of τ trajectories represent

the steepest entropy ascent solution. This steep ascent can be better visualized

when we consider the surface of revolution generated from the entropy functional

in Eq. (3.4) and plot these spiral trajectories onto that surface as shown in Fig.

3.5(b). We can see that as time passes, each trajectory strives to reach the top of

the surface, where the point with the highest entropy is located. We can also see

that high τ states maintain a limiting characteristic at the bottom of the surface

of revolution, taking nearly forever to reach the top (unitary type behavior). Fig.

3.6 depicts a schematic development of the generic non-energy conserving motion

for a qubit under SEA. As the value of energy falls, so does the value of re. The
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3.4 FLM on a qubit

Figure 3.6 Schematic representation of non-energy conserving SEA evolution of the
Bloch vector for a qubit. The purple trajectory denotes the said dynamics. Image cited
from Ref. [81].

state arrives at the global equilibrium when it reaches zero at the center.

Summary

In brief, in this chapter, we have seen a first-hand application of SEA. We first

presented the GPB solution, which is exact. we introduced our approximation

method namely, the fixed Lagrange’s multiplier method. We compared the FLM

solution for qubit computed at different conditions with the exact GPB and full

numerical results of BSEA. We then commented on the nature of trajectories under

this scheme onto the Bloch sphere and the entropy surface.
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I entered the uncertain realm,
with my tools and my hopes.

I paved new scopes,
and kept on traversing.





4.1 Theoretical minimum

Following the discussion of the steepest entropy ascent formalism for

a qubit, i.e., a two-level system, it is only natural that we present the

extension of the same to a N -level system. As the Bloch sphere picture

was quite intuitive for the case of a qubit, it is not so when it comes to more than

two-level systems. One of the major reasons being the increase in the dimensionality

of the sphere, for a N -level system, our Bloch sphere will reside in a space of

N2 −1 dimensions, which is not at all intuitive [63]. Therefore, we look for different

modeling of the same. We arrive at the doorstep of the continuous-time quantum

walker model, which easily allows us to understand the behavior of a N -level

quantum system through some applications of graph theory and related topics. In

this chapter, we will study SEA on a single walker performing a continuous-time

quantum walk. We will begin with a short review of the theoretical background

required by the said study, and will then follow up with the application of the FLM

scheme developed in the previous chapter. Our subsequent analysis will include a

comparison with numerical results, the dependence of Lagrange’s multipliers βis

upon the dimensionality of the system among other parameters, and a closer look

at the entropy production rate for this system.

4.1 Theoretical minimum

As discussed in chapter 1, the continuous-time quantum walker (CTQW) is a

quantum analog of the classical walker. One considers a walker (a resident of the

quantum realm), beginning the journey on a grid of some fashion. A graph is

usually employed to describe the said network. In the classical case, the walker

would toss a coin, and depending on the outcome will choose one path from the set

of multiple options available to it. However, in the quantum case, and especially in

the case of continuous-time motion, the walker has the opportunity of exploiting
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Chapter 4 SEA in a N-level System

the linear superposition of all the available paths as long as there is no measurement

of position or any other walk-dependent parameters involved. In the CTQW, there

is a hopping probability associated with each neighborhood point for the walker,

and the transition can happen at any time. Hence the name continuous-time [41,

82].

A traditional way of modeling a random walk process involves a graph. A graph G

is a set of nodes or vertices V = {vi}, and the connections between those vertices

are called edges E = {eij|vi, vj are connected}. There exists an extensive literature

on various types of graphs and the consequences of performing walks on them.

However, for this thesis, we are only interested in CTQW as a model. Hence we

consider a quantum walker walking on some undirected graph G. G has no double

edge or self-loops, and the number of vertices N = |V|. The adjacency matrix A

of G can be defined as follows,

A : aij =


1 if eij ∈ E

0 otherwise.

(4.1)

Thereafter, we can define the Laplacian L of G as [44, 83],

L = D − A, (4.2)

D is diagonal and has an entry as the degree of the ith vertex, di. We associate a

hopping probability µij with the probability of transition between two adjacent

vertices (vi, vj ) per unit time. Considering uniform transition rates µij = µ, for

the unitary continuous-time quantum walker we can write [41, 44, 50],

d |Ψ⟩
dt

= − i
ℏ

µL |Ψ⟩ . (4.3)
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4.2 FLM on a CTQW

In Eq. (4.3), the quantity µL is identified as the Hamiltonian H of the CTQW.

The solution to Eq. (4.3) is read as,

|Ψ(t)⟩ = exp(−iµLt) |Ψ(0)⟩ ≡ U(t) |Ψ(0)⟩ ≡ Ut |Ψ(0)⟩ , (4.4)

where, |Ψ(0)⟩ is the initial state of the walk, and ℏ = 1. In terms of density matrix

ρ, we can write Eq. (4.4) as,

ρt = Utρ
0U †

t , (4.5)

implying that the quantum state of the walker undergoes unitary rotation in the

state space as the walker exhibits CTQW.

4.2 FLM on a CTQW

The usual probability distribution computed from Eq. (4.5) for a walker performing

CTQW on a ring of N = 100 nodes after some time t = 10 is shown in Fig. 4.1,

which is similar to CTQW walk distribution on a line for a short time and large N .

It is to be noted while we find probability distributions such as this at some time t,

they are not the same for the discrete and continuous cases. In the continuous case,

we have transition amplitudes per unit time (µ), and we consider probabilities at

some instance post-initiation. These instances can be recorded as steps. Wherein

for the discrete case, a coin operation followed by a swap operation constitutes

a step. For simplicity, we have considered µ = 1 [41], which means an unbiased

transition to any adjacent vertex in an undirected graph G with no loops 1. We

use the standard basis to describe the density matrix of the walker at some given

time as

ρt =
∑

i

pt
i |i⟩⟨i| , (4.6)

1In the Fig. 4.1, we have only shown the nodes up to which the walker has spread after t=10;
it does not show all nodes.
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Figure 4.1 Plot of the probability vs nodes for a single continuous-time quantum walker
on a cycle graph of 100 vertices (nodes) after time t = 10. The walker was initiated at
node 50, which is shifted here to zero for symmetry. Image cited from Ref. [81].

pt
i is the probability of finding the walker on a node (vertex) i after some time t

since the initiation of the walk. Laplacian of G can be expressed as

L =D − A

=
∑
ij

(diδij |i⟩⟨j| − Eij (|i⟩⟨j| + |j⟩⟨i|)) ,
(4.7)

Eij = 1 when there is an edge element eij ∈ E, and zero otherwise. For the

Hamiltonian in the standard basis; the diagonal elements are simply entries of D,

Hd
ii = µdi, di is the degree at the vertex vi. So in the case of these walks, using the

computation of βi carried out below, the Eq. (3.38) becomes,

ρt = exp(−iH t)
(∑

m

exp
(
µt

m − µc
m

)
Pm

)
exp(iH t), (4.8)

where, µt
m = (ln(p0

m) + µc
m) e−t/τ = ṽiµt, and µc

m = µβHdi − βI , and Pm is the

projection operator. p0
m is found using Eq. (3.40). We model the walk using

fixed parameters defined beforehand so that we can characterize and comprehend
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4.2 FLM on a CTQW

Figure 4.2 Plot of ariation of Lagrange multipliers βi over time. In the legend, βI is
tagged, as it varies for different N and ε values. βH is the constant line y = 0. Image
cited from Ref. [81].

the solutions to Eq. (4.8). A cycle graph CN being 2-regular, has the following

Hamiltonian in the standard basis,

H =
∑

i

(
2 |i⟩⟨i| − Ei,̃i

(∣∣∣i〉〈̃i∣∣∣+ ∣∣∣̃i〉〈i∣∣∣)) , (4.9)

where ĩ = i (mod N) + 1. Using this H , and the equilibrium distribution ρu,

ρu = 1
N

I, and H as given in Eq. (4.9), we begin by computing trace function as
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required in the Eqs. (3.8) which are as given below:

tr(ρ) =1,

tr(ρH ) =d,

tr
(
ρH 2

)
=N

(
d2 + 2

)
,

tr(ρ ln(ρ)) = − ln(N),

tr(ρH ln(ρ)) = − d ln(N).

(4.10)

Using these traces and noticing that Ω is given by

tr
(
ρH 2

)
tr(ρ) − (tr(ρH ))2 = (N − 1) d2 + 2N, (4.11)

we can write the expressions below for βis,

βH = 0,

βI = − ln(N),
(4.12)

with k = 1. In Fig. 4.2, we plot the variation of βI for two different N values

of 50 and 30, respectively. We numerically solve the Eq. (3.8) and use the ρ

thus produced at each iteration to compute βi’s as defined in Eqs. (2.48), (2.49).

We can see from the plot that the final value of βI is dependent on N and mean

energy. Consider the red and black lines, for instance. As time passes, we observe

that they merge towards a consistent value provided by Eq. (4.12), implying that

although there is an initial dependency on ε, as equilibrium approaches, all of the

βI take the same value. If one desires to evaluate the behavior far from equilibrium,

it is prudent to consider the initial βI in FLM. Otherwise, using an equilibrium

distribution to fix the multipliers for FLM will correctly describe equilibrium

behavior. The βH plot is shown by the y = 0 line in the graph, which remains
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4.3 Analysis of SEA evolution

constant in this case. The variation in βI lies within a single order of magnitude

and does not reflect a strong difference in probability amplitudes, as seen in Fig.

4.3.

4.3 Analysis of SEA evolution

4.3.1 Probability amplitudes
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Figure 4.3 Probability amplitudes for a single CTQW under SEA on a cycle of 100
nodes under SEA conditions after t = 20, initiated at node 50 (shifted to node 0 for
symmetry), after t = 20. The amplitudes are plotted for various relaxation times τ as
given in the legend. ε is 0.99. The plot compares the analytic solution found using the
FLM method (solid lines in the plot) and those (dotted lines in the plot above) from
the numerical solution to the Eq. (3.8) using CTQW Hamiltonian and other relevant
substitutions. Image cited from Ref. [81].

To analyze the solution got from FLM, we begin by plotting the probability

amplitudes. Using appropriate τ values, we get Fig. 4.3. we find from the plot,

that the FLM (solid lines) and NUM (dotted lines, numerical solution of Eq. (3.8))

are not distinguishable from each other through visual observation alone. As seen
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in the plot, the probability amplitudes are of the order of 10−2. From our numerical

computation, we’ve estimated the difference of NUM with FLM results, which is

of the order 10−4 for low τ , and of the order 10−3 for high τs. We see, for the

distributions considered after t = 20, a similarity in the behavior of probability

emerges as in Figs 3.3, 3.5(a). Higher τ or states closer to unitary states tend to

relax slower. For low enough τ , the rapid relaxation of the system is observed

in Fig. 4.3, and all initial information is lost. On the other hand, high τ states

having lesser entropy generation rates drive the system toward unitary-like behavior.

This can also be understood in terms of the localization and delocalization of the

walker. The probability distribution for the case of τ = 0.2 in Fig. 4.3 shows

strong delocalization. While in the same figure, because of τ = 50.11, 100.02, and

t = 20 < τ , we can say decoherence is yet to set in. That is, it displays linear

behavior. As understood so far, low τ results in more non-linear behavior. But

how low? Unfortunately, the answer to such a question remains elusive [9]. In

the following, we try to figure that out by using entropy and the rate of entropy

production.

4.3.2 Entropy and energy

We first begin by checking whether, despite all the nonlinear evolution, energy

indeed remains conserved. To do so, we plot the function tr(ρH ) for different

τ values in Fig. 4.4(a). To check for consistency we plot both the FLM and

NUM results. We see energy is constant throughout the dynamics. This implies

that the FLM solution respects the primary constraints of motion, and agrees

with the numerical results. To further check the efficacy of FLM, we plot the

entropy functional (− tr(ρ ln ρ)) against the same set of τs as in Fig. 4.4(a) in Fig.

4.4(b) for both FLM and NUM results. We find a good agreement again, except

for the high τ case. Here, we see FLM surpassing NUM values, which is to be
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(a) (b)

Figure 4.4 (a) Plot of average energy vs time, and (b) entropy vs time for a CTQW on
a cycle graph of 100 nodes for various τ (first column in the legend) values and ε = 0.99.
The walk was performed up to t = 100. FLM (solid lines) denotes the analytically
computed results, while NUM (dotted lines) denotes the numerical results. Image cited
from Ref. [81].

expected because FLM is an approximation after all. Yet the agreement between

the two is reassuring for our scheme. We note that in Fig. 4.4(b), except for the

low τ case, where entropy directly shoots up to the maximum value, there is a

monotonous increment. This validates the construction of SEA EoM, which is

based on the entropy non-decrease principle. We proceed then to plot the rate of

entropy production for similar data. ΠS, the entropy generation rate functional

from Eqs. (2.24), (2.31) is given by,

ΠS = − k tr
(

(ln(ρ) + 1) dρ

dt

)

=2k2 tr((ln(ρ) + 1) L{ln(ρ), ρ}) + 2k2∑
i

(−1)iβi tr((ln(ρ) + 1) (LCiρ + ρCiL)).

(4.13)

Using L = I
4kτ

, we get,
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(a) (b)

Figure 4.5 Plot of the rate of change of entropy vs time for a CTQW on a cycle graph
of 100 nodes for (a) τ = 0.2, and (b) τ = (50.11, 100.02) with ε = 0.99. FLM (solid
lines) denotes the analytically computed results, while NUM (dotted lines) denotes the
numerical results. Image cited from Ref. [81].

ΠS = k

2τ

(
tr((ln(ρ) + 1){ln(ρ), ρ}) +

∑
i

(−1)iβi tr((ln(ρ) + 1){Ci , ρ})
)

. (4.14)

As before, we see a good agreement between the numerical and FLM results in

Fig. 4.5. We begin with the panel of Fig. 4.5(a), where we see within t < 0.1 the

graph peaks around the value 32, which is twice the order of magnitude higher in

other high τ cases Fig. 4.5(b). Hence, we see a visual confirmation of the SEA

ansatz that the steepest entropic path is also the one with the maximum entropy

production rate. And this happens at low τ values. Also, as noticed in Fig. 3.3,

as τ increases, we see differences between FLM and NUM results. Despite this

difference, there is a strong agreement at initial and later ts. This suggests FLM

can be relied on to faithfully study the ‘overall’ nature of the dynamics. It goes

without saying, for very precise results at high τ , one should rely on NUM results

instead of FLM. As we can see, none of the plots discussed so far have been able
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(a) (b)

Figure 4.6 Contour containing ΠS values for a CTQW of N = 50 vs variation in τ and
ε after time t = 1 in (a), and t = 3 in (b). The color bars provide the range and contrast
of ΠS values. As discussed in this chapter, the high ΠS valued zones are concentrated
around high ε and low τ values. These deep purple areas bounded in cyan represent the
maximum entropy generation area. In the insets of panels (a) and (b): zoomed-in view
of the bounded region displaying max ΠS . Image cited from Ref. [81].

to give us an indication of how low τ could be, only suggesting the lower the τ

the steepest the ascent is. To get an approximate picture of this behavior we

consider instead ‘areas’ of the high rate of entropy production ΠS (4.14) against τ

and ε values as given in Fig. 4.6 for a CTQW with N = 50. τ has the greatest

contribution to defining ΠS; as seen in Fig. 4.6, higher relaxation times result in

essentially negligible entropy formation, which is consistent with our prior findings.

As seen in Fig. 4.6(a), lower τ states yield larger ΠS values early on, which is

typical SEA behavior. Furthermore, as time passes, the highest ΠS states (bounded

by the cyan line in the plots) begin to move higher along the right side of the

figures, as seen in Fig. 4.6(b). Only large τ valued states remain yet to equilibrate,

causing a change in entropy. It is worth noting that the amount ε, by definition,

reflects how pure the original state is. As a result, a state with low ε is projected
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to attain equilibrium (that is, a noisy state grows louder) rather quickly. However,

as shown in Fig. 4.6, the rate of entropy production may not be at its peak in

those cases. Under SEA evolution, states nearest to pure states have the highest

entropy generation rate (the deep purple shaded contours in the diagram). This

pattern may be explained by the fact that under the Bloch sphere representation,

low entropic states located away from equilibrium must undergo a greater change

in entropy while equilibrating. As a result, despite noisy channels growing noisier,

their low information content accounts for a low entropy production rate.

Summary

To summarize, we have studied the continuous-time quantum walker under the

steepest entropy ascent formalism on a simple cycle graph of N vertices (nodes).

We have applied the fixed Lagrange’s multiplier method developed earlier on the

walker evolution. We have demonstrated the justification for using FLM by showing

the slow variation of the multipliers over time. We have established the efficacy of

FLM by performing various analyses while simultaneously comparing those results

with exact numerical values.
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Complexities grew and surrounded,
my path became quiet and bounded,
as the limitations became physical,

and difficulties astounding.





5.1 The Bloch parametrization

Before we begin to contemplate the nature of SEA evolution of a com-

posite system analytically, we must digress. It is imperative that we

set the necessary foundation for the mathematical background here.

As we have noted earlier, in general, Bloch vector formalism does not provide a

bijective map between the space containing all the Bloch vectors of unit radius and

the density matrices that represent a physical system [69]. Consequently, we deal

with nontrivial parametrizations, and the results are not always as convenient and

satisfying as that of the two-level systems. As seen in the previous chapter, similar

arguments led us to use the continuous-time quantum walker model to understand

N−level systems. However, one can wish to study SEA evolution analytically for

a lower dimensional composite, for example, a two-qubit system. Besides, a proper

parametrization can also provide a testing ground for further research involving

two qubits analytically. While some concepts such as the Werner state [84] and

EPR pairs [85] have been well studied and understood along with the separable

cases, the case for mixed states are not so well researched. Here, in this chapter, we

will discuss Bloch parametrization. We will introduce some new results regarding

the eigenvalues of Bloch vectors for three and four-level systems using some general

parametrizations as found in the literature.

5.1 The Bloch parametrization

The case of extending the concept of Bloch vectors from two-level systems to

N−level system has garnered considerable attention over the years. Basically, one

needs to generalize the traceless Pauli matrices to higher dimensions to have a

mutually orthogonal basis, and expand the general N × N Hermitian positive

semidefinite matrix (i.e., ρ) in such suitable basis involving N2 terms. One of the

most prominent methods is the multipole expansion method by Park et. al. [63, 64].
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In this approach the basis used is generated using concepts derived analogous to the

algebra involving spins, hence Clebsch-Gordan coefficients are used. On the other

hand, using generators of SU(N) one can use the ‘generalized Gell-Mann’ (GGM)

matrices to compute the required set of orthogonal basis [66–69]. The benefit of

the latter approach lies in the non-requirement of Clebsch-Gordan coefficient and

an iterable method of getting the complete basis. In this thesis, we have followed

the method of GGM basis for the sake of all computations.

5.1.1 The generalized Gell-Mann matrix representation

The general Bloch vector formalism when applied to a N−level system becomes,

ρ = 1
N

IN +
√

N(N − 1)
2 r · Γ

 . (5.1)

r is a N2 − 1-dimensional vector with the components given as {r1, r2, · · · , rN2−1}

and
√∑N2−1

i=1 r2
i = r. IN is an N × N identity matrix. Defining dyadic operators

or dyads as P(i, j) = |i⟩⟨j|, we can define the N2 − 1 generators of SU(N) as

components of the vector Γ as [69] follows. Firstly, there are N − 1 diagonal

operators,

Γℓ =
√

2
ℓ(ℓ + 1)

 l∑
j=1

P(j, j) − ℓ · P(ℓ + 1, ℓ + 1)
 , (5.2)

for 1 ≤ ℓ ≤ N − 1. Then we have the following N(N − 1) operators of the form

Γs = P(j, i) + P(i, j), for 1 ≤ i < j ≤ N (5.3)

Γa = i (P(j, i) − P(i, j)) , for 1 ≤ i < j ≤ N, (5.4)

additionally, we have N ≤ s ≤ N(N + 1)
2 −1, and N(N + 1)

2 ≤ a ≤ N2 −1, which

implies Γ = {Γℓ} ∪ {Γs} ∪ {Γa}.

Although the above expansion of basis is easy to follow, it does not help in
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ensuring that ρ is positive semidefinite. We can state this more formally in the

following way. Consider the diagonalization of ρ using the similarity transformation

given as below

DN = UρU †, (5.5)

where U is unitary, and ρ is such that eigenvalue λi = λi(ρ) ≥ 0, and tr(ρ) =∑
i λi = 1. Since ρ is unitarily similar to DN , a parametrization of DN will imply

the same for ρ. Now, let us consider the parameter set QN ∈ RM where M = M(N)

[69]. As we have seen with the eigenvalues of ρ for N = 2 (see Chapter 3), we see

for r ≤ 1 the following

Q2 = {r ∈ R3 : r ≤ 1} = B(R3), (5.6)

where B(R3) denotes a closed unit ball in R3 centered at the origin. A map (F2(r))

exists that takes the elements from Q2 to the matrices D2 as in Eq. (5.5) as below

[66, 69]

F2(r) = 1
2

 1 + r3 r1 − ir2

r1 + ir2 1 − r3

, r ∈ Q2. (5.7)

This map is onto D2 and one-to-one. Thus (Q2, F2) is a parametrization of D2

with M = N2 − 1 = 3, and the parameter set Q2 forms the Bloch ball. Having

established this notation, now we can formally state the problem of parametrization

when it comes to N > 2.

5.1.2 The general parametrization

Firstly, we need to identify QN . To do that, a straightforward approach would

require considering the characteristic polynomial of Eq. (5.1), which can be given
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by [69, 86]

det (λIN − ρ) =
N∑

i=0
(−1)iaiλ

N−i, a0 = 1. (5.8)

The coefficients ai are determined by the generators Γi and the parameters r =

(r1, · · · , rN2−1) ∈ RN2−1. Let the roots of the polynomial in Eq. (5.8) be λ1, · · · λN .

Then we can write
N∑

i=0
(−1)iaiλ

N−1 =
N∏

i=1
(λ − λi) = 0. (5.9)

Before we proceed to find the relations between the roots and the coefficients ai,

we notice the following relations between the generators [86],

Γ†
i = Γi, tr(Γi) = 0, tr(ΓiΓj) = 2δij, (5.10)

[Γi, Γj] = 2i
N2−1∑
k=1

fijkΓk, {Γi, Γj} = 4
N

δijIN + 2
N2−1∑
k=1

gijkΓk. (5.11)

Here, fijk is a completely antisymmetric tensor, and gijk is a completely symmetric

one. These are the structure constants of the Lie algebra of su(N).

Now we focus on the relation between the coefficients and the roots. First,

we note that the necessary and sufficient condition for the roots to be positive

semidefinite is that the coefficients be positive semidefinite and vice versa. Formally

stated as below [69, 86]

λi ≥ 0 (i = 1, · · · , N) ⇐⇒ ai ≥ 0 (i = 1, · · · , N). (5.12)

The Eq. (5.12) can be proved using Vieta’s formula given as

ai =
N∑

1≤i1<i2<···ij

λi1λi2 · · · λij
. (5.13)
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These coefficients can be computed explicitly as follows:

1!a1 = 1,

2!a2 =
(

N − 1
N

− 1
2r2

)
,

3!a3 =
(N − 1)(N − 2)

N2 − 3(N − 2)
2N

r2 + 1
2

N2−1∑
i,j,k=1

gijkrirjrk

 ,

4!a4 =
(

(N − 1)(N − 2)(N − 3)
N3 − 3(N − 2)(N − 3)

N2 r2 + 3(N − 2)
4N

r4

+2(N − 3)
N

N2−1∑
i,j,k=1

gijkrirjrk − 3
4

N2−1∑
i,j,k,l,p=1

gijkgklprirjrlrp

 .

(5.14)

However, this cumbersome-looking result can be made more convenient by using

trace invariants [69]. But before that, we need to use Newton’s formula involving

sums of powers of roots and the coefficients of the polynomials as under [86]. Let

us use Eq. (5.9) and get the following using Newton’s formulas

kak =
k∑

i=1
(−1)i−1CN,iak−i (1 ≤ k ≤ N). (5.15)

We have defined the power of roots as the collective CN,i ≡ ∑N
j=1 λi

j. This allows

us to write the following

1!a1 = CN,1,

2!a2 =
(
C2

N,1 − CN,2
)

,

3!a3 =
(
C3

N,1 − 3CN,1CN,2 + 2CN,3
)

,

4!a4 =
(
C4

N,1 − 6C2
N,1CN,2 + 8CN,1CN,3 + 3C2

N,2 − 6CN,4
)

,

· · · = · · ·

(5.16)

To find the CN,i let us use the following trace relationship using Eq. (5.10) and
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Eq. (5.11),

tr(ΓiΓjΓk) = 2zijk,

tr(ΓiΓjΓkΓl) = 4
N

δijδkl + 2zijmzmkl,

tr(ΓiΓjΓkΓlΓm) = 4
N

δijzklm + 4
N

δlmzijk + 2zijnznkozolm,

· · · = · · · ,

(5.17)

while denoting zijk = gijk + ifijk. Using Eq. (5.1), we note CN,i = tr(ρi). This

allows us to use Eq. (5.17) to write the following expressions

CN,1 = 1,

CN,2 =
(
4N + 2N2r2

) 1
(2N)2 ,

CN,3 =
(
8N + 12N2r2 + 2N3rirjrkgijk

) 1
(2N)3 ,

CN,4 =
(
16N + 48N2r2 + 16N3rirjrkgijk + 4N3r4 + 2N4rirjrkrlgijmgmkl

) 1
(2N)4 .

(5.18)

When we substitute Eq. (5.18) in Eq. (5.16), we get the following trace relations,

which are an improvement over Eq. (5.14),

1!a1 = tr(ρ),

2!a2 = 1 − tr
(
ρ2
)
,

3!a3 = 1 − 3 tr
(
ρ2
)

+ 2 tr
(
ρ3
)
,

4!a4 = 1 − 6 tr
(
ρ2
)

+ 8 tr
(
ρ3
)

− 6 tr
(
ρ4
)

+ 3
(
tr
(
ρ2
))2

.

(5.19)

This concludes our introduction to Bloch parametrization. However, our job

does not end here. This parametrization provides us a set QN from which we can

have a map to DN , but, which r ∈ RN2−1 actually lies in QN is still a difficult
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problem to tackle. Most of the literature contain a convenient set of non-zero

components of r and correspondingly study different ‘cuts’ in the hyper ball

B(RN2−1) of which QN is a proper subset. Different types of such cuts exist

depending on the components of interest [67, 86, 87]. For the purpose of this thesis,

and the upcoming computations, it is imperative that we seek out some analytical

form of the eigenvalues as in the two-level case, viz., 1 ± r

2 , which seems to be

lacking in the literature. So in the next sections, we develop the required analytical

form of some of the eigenvalues for the cases of N = 3 and N = 4 respectively.

5.2 The case with N = 3

The density matrix ρ for N = 3 can be written as

ρ3 = 1
3
(
I3 +

√
3r · Γ

)
. (5.20)

The Bloch vector r is eight-dimensional, and the corresponding eight Generalized

Gell-Mann matrices can be expressed in the following way. The two diagonal

matrices are,

Γ1 =


1 0 0

0 −1 0

0 0 0

, Γ2 = 1√
3


1 0 0

0 1 0

0 0 −2

. (5.21)
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And the six off-diagonal ones are given as

Γ3 =


0 1 0

1 0 0

0 0 0

, Γ4 =


0 0 1

0 0 0

1 0 0

, Γ5 =


0 0 0

0 0 1

0 1 0

,

Γ6 =


0 i 0

−i 0 0

0 0 0

, Γ7 =


0 0 i

0 0 0

−i 0 0

, Γ8 =


0 0 0

0 0 i

0 −i 0

. (5.22)

Now that we have declared all the necessary components, we are equipped to write

down the cubic characteristic polynomial whose roots λ will give us the eigenvalues.

A straightforward computation yields, with r =
∣∣∣∣√∑8

i=1 r2
i

∣∣∣∣,

λ3 − λ2 + 1
3λ

(
1 − r2

)
+ 1

3

(1
3 (1 − 2r2)

(
r2 − 1

3
(
4r2

2 + 2r2 + 1
))

+
(

r2 − r1√
3

)(
r2

4 + r2
7

)
− 2√

3
(r3r4r5 + r6r7r5 − r4r6r8 + r3r7r8)

+
(

r1√
3

+ r2

)(
r2

5 + r2
8

))
= 0

(5.23)

Comparing with Eq. (5.8) we get,

a3 = −1
3

(
1
3 (1 − 2r2)

(
r2 − 1

3
(
4r2

2 + 2r2 + 1
))

+
(

r2 − r1√
3

)(
r2

4 + r2
7

)
− 2√

3
(r3r4r5 + r6r7r5 − r4r6r8 + r3r7r8) +

(
r1√

3
+ r2

)(
r2

5 + r2
8

))
.

(5.24)

We re-write Eq. (5.23) with Eq. (5.24) the following way,

λ3 − λ2 + 1 − r2

3 λ − a3 = 0. (5.25)
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Reading with the following substitutions

−1 + 27a3 + 3r2 = ω,(
ω +

√
−4r6 + ω2

)1/3
= θ,

(5.26)

Eq. (5.25) has the following solutions

λ1 = 1
3 + 21/3r2

3θ
+ θ

3 · 21/3
,

λ2 = 1
3 −

(
1 + i

√
3
)

r2

3 · 21/3θ
+

(
1 − i

√
3
)

θ

6 · 21/3
,

λ3 = 1
3 −

(
1 − i

√
3
)

r2

3 · 21/3θ
+

(
1 + i

√
3
)

θ

6 · 21/3
.

(5.27)

To ensure the realness of the roots in Eq. (5.27), we must ensure the criteria below

r2

21/3θ
= θ

2 · 21/3
, (5.28)

which implies

θ = 21/3r. (5.29)

Now we get nice-looking roots for the case of N = 3 of the Bloch sphere represen-

tation as given under

λ1 = 1
3 (1 + 2r) ,

λ2 = 1
3 (1 − r) ,

λ3 = 1
3 (1 − r) .

(5.30)

In the following, we consider the N = 4 case.
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5.3 The case with N = 4

We begin by writing down the density matrix using the GGM basis as

ρ4 = 1
4
(
I4 +

√
6r · Γ

)
. (5.31)

In this case, r is 15-dimensional, with r =
∣∣∣∣√∑15

i=1 r2
i

∣∣∣∣. Also, Γ has 15 compo-

nents enumerated and expressed as under. Firstly, the three diagonal matrices,

Γ1 =



1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0


, Γ2 = 1√

3



1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0


, Γ3 = 1√

6



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3


.

(5.32)

And the 12 off-diagonal matrices are,

Γ4 =



0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


,Γ5 =



0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0


, Γ6 =



0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0


,

Γ7 =



0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


,Γ8 =



0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0


, Γ9 =



0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0


,
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Γ10 =



0 i 0 0

−i 0 0 0

0 0 0 0

0 0 0 0


,Γ11 =



0 0 i 0

0 0 0 0

−i 0 0 0

0 0 0 0


, Γ12 =



0 0 0 i

0 0 0 0

0 0 0 0

−i 0 0 0


,

Γ13 =



0 0 0 0

0 0 i 0

0 −i 0 0

0 0 0 0


,Γ14 =



0 0 0 0

0 0 0 i

0 0 0 0

0 −i 0 0


, Γ15 =



0 0 0 0

0 0 0 0

0 0 0 i

0 0 −i 0


. (5.33)

Using this basis, we can express the following

r · Γ =



r1 + r2√
3 + r3√

6 r4 − ir10 r5 − ir11 r6 − ir12

r4 + ir10 −r1 + r2√
3 + r3√

6 r7 − ir13 r8 − ir14

r5 + ir11 r7 + ir13 −2r2√
3 + r3√

6 r9 − ir15

r6 + ir12 r8 + ir14 r9 + ir15 −
√

6r3
2


, (5.34)

the reduced density matrices can be found as,

ρA = (I2 + rA · σ) /2 ,

ρB = (I2 + rB · σ) /2 ,

rAj =
√

6 Tr (σjtrB (r · Γ)) ,

rBj =
√

6 Tr (σjtrA (r · Γ)) ,

rA =


4(

√
2r2 + r3)

2
√

6(r5 + r8)

2
√

6(r11 + r14)

 , rB =


2(

√
6r1 −

√
2r2 + 2r3)

2
√

6(r4 + r9)

2
√

6(r10 + r15)



(5.35)

As it has been obvious by now, it will be quite difficult and frivolous to the current

discussion if we explicitly write down the coefficients a3 and a4 like we did in the case

105



Chapter 5 The Bloch Vector for N>2

of the qutrit. Instead, we will note the following, that tr(ρ2) = 1
N

(1 + (N − 1)r2).

This gives us upon substituting in Eq. (5.19) the following expression

a2 = N − 1
2N

(
1 − r2

)
, (5.36)

which for N = 4 gives, a2 = 3
8 (1 − r2). Setting this into the quartic characteristic

polynomial of Eq. (5.31), we get the following equation (a0 = −a1 = 1),

λ4 − λ3 + 3
8
(
1 − r2

)
λ2 − a3λ + a4 = 0. (5.37)

with the help of the Mathematica Software [88] the roots may be put in the

following form,

4 λ1 = 1 − α1 −
√

3r2 − α2
1 − α2,

4 λ2 = 1 + α1 +
√

3r2 − α2
1 + α2,

4 λ3 = 1 + α1 −
√

3r2 − α2
1 + α2, (5.38)

4 λ4 = 1 − α1 +
√

3r2 − α2
1 − α2,

where α1 and α2 are related to r, a3 and a4 as follows

α1 = r
√

α3/2 + 1 ,

α2 = (24a3 + 3r2 − 1)/α1 ,

α3 = 3
√

α5 + α4/(3 3
√

α5) ,

α4 = 28a4 − 26a3 + 3
(
1 − r2

)2
, (5.39)

α5 = α6 +
√

α2
6 − α3

7 ,

α6 = 28a4r
2 + 28a2

3 − 25a3
(
1 − r2

)
+
(
1 − r2

)3
,
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5.3 The case with N = 4

α7 = 28a4/3 − 26a3/3 +
(
1 − r2

)2
. (5.40)

All the above αj’s vanish in the limit r ↓ 0, which corresponds to the maximally

mixed state ρ = I4/4 for which r = 0, a3 = 1/24, and a4 = 1/28. The conditions

required for the positivity of the eigenvalues may be written as

23 a2 = 3(1 − r2) ≥ 0 ,

24 a3 = α1α2 + 1 − 3r3 ≥ 0 , (5.41)

28 a4 = 4α2
1(α2

1 − 3r2) + 4α1α2 − α2
2 + (3r2 − 1)2 ≥ 0 .

The conditions required for the αj ’s and the eigenvalues to be real may be written

as

α3/2 + 1 ≥ 0 , (5.42)

α7 ≤ 0 , (5.43)

α2
6 − α3

7 ≥ 0 , (5.44)

α2
1 ≤ 3r2 ± α2 or α2

1 − 3r2 ≤ α2 ≤ 3r2 − α2
1 . (5.45)

Notice also that

1 = λ1 + λ2 + λ3 + λ4 (5.46)

r2 = (4(λ2
1 + λ2

2 + λ2
3 + λ2

4) − 1)/3 (5.47)

α1 = λ2 + λ3 − λ1 − λ4 (5.48)

α2 = 2(λ2 − λ3)2 − 2(λ4 − λ1)2 (5.49)
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5.4 The nature of operators in Bloch representation

In his work, Beretta provided a unique formalism to understand the nature of

operators in Bloch representation for the case of N = 2 [7]. However, this work

has not been picked up by others and we felt the need for a similar formalism

for the analytical computation that will be needed in the following chapter. One

major obstacle could have been the unavailability of analytical forms of the roots

in the Bloch representation for N ≥ 3. To remedy this, here we present Beretta’s

formalism, followed by our extension of the same in the case of N = 3 and N = 4

with the help of the solutions presented in Eq. (5.30) and (5.38), respectively.

5.4.1 N=2

For the two-level case, the roots are given as λ1 = 1
2 (1 + r), and λ2 = 1

2 (1 − r),

and λ1 − λ2 = r. We also know that if {λi} are the eigenvalues of a matrix A with

the corresponding eigenvectors denoted by {|λi⟩}, then using spectral theorem, we

can write the following,

F (A) =
N∑

i=1
F (λi) |λi⟩⟨λi| , (5.50)

where F acts on real parameters x. Also, we will use the completeness relation∑N
i=1 |λi⟩⟨λi| = IN . So, we can write the following steps beginning from Eq. (5.50)

for N = 2 [7]

F (ρ) = F (λ1) |λ1⟩⟨λ1| + F (λ2) |λ2⟩⟨λ2| ,

= 1
r

[λ1F (λ2) − λ2F (λ1)] I2 + 1
r

[F (λ1) − F (λ2)] ρ,

= 1
2 [F (λ1) + F (λ2)] I2 + 1

2r
[F (λ1) − F (λ2)] r · σ.

(5.51)
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In deriving the last line of Eq. (5.51), Eq. (3.1) has been used. The benefit of this

formalism can be seen immediately, the operator F (ρ) has two components. The

component involving I2 in the last line of Eq. (5.51) is of non-zero trace. Whereas,

the other component involving the Pauli operator remains traceless. Thus, for

analytical computations of operators such as ρ ln(ρ) and their respective traces, we

find ourselves at an advantage. However, this is not easily generalizable to higher

dimensions. We will shortly see that below.

5.4.2 N=3

For the N = 3 case, we use Eq. (5.30) to see that 2λ1 − λ2 − λ3 = 2r, and λ2 = λ3.

As before, we begin with the spectral theorem and use the definition in Eq. (5.20)

F (ρ3) = F (λ1) |λ1⟩⟨λ1| + F (λ2) |λ2⟩⟨λ2| + F (λ3) |λ3⟩⟨λ3| ,

= 2λ1 − λ2 − λ3

2r
[F (λ1) |λ1⟩⟨λ1| + F (λ2) |λ2⟩⟨λ2| + F (λ3) |λ3⟩⟨λ3|] ,

= 1
2r

[(2λ1 − λ3 − r) F (λ2) + (2λ1 − λ2 − r) F (λ3) − (λ2 + λ3) F (λ1)] I3

+ 1
2r

[2F (λ1) − F (λ2) − F (λ3)] ρ3,

= 1
3 [F (λ1) + F (λ2) + F (λ3)] I3 + 1

2
√

3r
[2F (λ1) − F (λ2) − F (λ3)] r · Γ.

(5.52)

5.4.3 N=4

We observe that there is various class of degeneracy when four eigenvalues are

involved. Either one is different, and all three are the same, or there is a pairwise
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degeneracy, or all four are the same. The first class is

λ4 = λ3 = λ1 = (1 − α1)/4, λ1 ≤ 1/3

λ2 = 1 − 3λ1 = (1 + 3α1)/4,

α1 = 1 − 4λ1, −1/3 ≤ α1 ≤ 1

α2 = 2α2
1 = 2(1 − 4λ1)2, r2 = α2

1

(5.53)

which includes the one-dimensional pure states, α1 = 1 (λ1 = λ3 = λ4 = 0, λ2 = 1),

the maximally mixed state, α1 = 0 (λ1 = λ2 = λ3 = λ4 = 1/4), the maximally

mixed states with three-dimensional support, α1 = −1/3 (λ1 = λ3 = λ4 = 1/3,

λ2 = 0), and the separable (−1/3 < α1 ≤ 1/3) and the entangled (1/3 < α1 < 1)

Werner states.

A second class is

λ4 = λ1 = (1 − α1)/4, λ1 ≤ 1/2

λ3 = λ2 = (1 − 2λ1)/2 = (1 + α1)/4

α1 = 1 − 4λ1, −1 ≤ α1 ≤ 1

α2 = 0, r2 = α2
1/3

(5.54)

which includes the maximally mixed state, α1 = 0 (λ1 = λ2 = λ3 = λ4 = 1/4), and

the maximally mixed states with two-dimensional support, α1 = ±1 (λ1 = λ4 = 1/2,

λ2 = λ3 = 0).

Consider a function F (x) such that x ∈ R. Now to find the analytical expression

for the operator F (ρ) in view of the degeneracy of the states in these two classes,

when λ2 ≠ λ1 [i.e., excluding the trivial case ρ = I4/4 for which F (ρ) = I4F (1/4)]
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5.4 The nature of operators in Bloch representation

we may write (Pi is the projector onto the degenerate subspace i)

ρ = λ1P1 + λ2P2, I4 = P1 + P2

P2 = I4 − P1, P1 = 1
λ1 − λ2

ρ − λ2

λ1 − λ2
I4.

(5.55)

From this, we have

F (ρ) = F (λ1)P1 + F (λ2)P2

= λ1F (λ2) − λ2F (λ1)
λ1 − λ2

I4 + F (λ1) − F (λ2)
λ1 − λ2

ρ

= (4λ1 − 1)F (λ2) − (4λ2 − 1)F (λ1)
4(λ1 − λ2)

I4 +
√

6 [F (λ1) − F (λ2)]
4(λ1 − λ2)

r · Γ

(5.56)

where for the first class, the eigenprojectors of ρ are such that Tr(P1) = 3 and

Tr(P2) = 1, whereas for the second class Tr(P1) = Tr(P2) = 2, and in the last

equation we used Eq. (5.1) for N = 4.

We can conjecture from above that given there exists a relation between the roots

of the density matrix ρN in N -level Bloch representation of the form f({λi}) = cr,

where c is an arbitrary constant and f({λi}) is an algebraic relation between the

N eigenvalues, there exist some eigenvalues for which the following relation holds

F (ρN) = 1
N

[
N∑

i=1
F (λi)

]
IN + 1

N · cr

√
N(N − 1)

2 f({F (λi)})r · Γ. (5.57)

Summary

To conclude, we have discussed the Bloch parametrization in the context of finite-

level density matrices. We have characterized the positivity of the eigenvalues by

imposing positivity on the coefficients of the characteristic polynomial. We have

further used trace invariants to simplify the general expressions for the coefficients

of the polynomial. Eventually, we solved the cubic for N = 3, and the quartic
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for N = 4 and present the analytic expressions of the roots. Finally, we analyzed

the general operator acting on these density matrices into zero trace and non-zero

trace contributions.
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6.1 No-signaling in nonlinear QM theroy

Having discussed the implications of the application of the steepest

entropy ascent ansatz for the case of a single particle quantum system

with finite energy levels, we turn our attention to study the composition

of the same. In the preceding chapter 5 we presented the necessary mathematics

required to proceed with our discussion. This chapter will focus on a fundamental

issue that arises whenever one considers a nonlinear extension of quantum mechanics

and its application to composite systems. It has been noted in literature [72, 73]

that a nonlinear extension of quantum mechanics attracts the possibility of a faster-

than-light communication (signaling) between two noninteracting subsystems of a

composite. As a consequence, such nonlinear extensions of QM are dreaded and

nontrivial. Despite various attempts, a truly nonlinear extension of QM satisfying

the criteria of no-signaling as set by Gisin and colleagues has not been discussed

in the literature so far [36, 72, 74–76]. Considering the strong nonlinearity present

in the evolution under SEA as we saw in the preceding chapters 2, 3, and 4, it

is prudent that before committing to solving the composite system under SEA,

we must address the issue of signaling in the context of SEA, and show that such

an ‘ EPR telephone line’ is precluded in the SEA theory by construction. We

begin by constructing the SEA equation of motion for a composite system. And

we will find the equation of motion for the reduced density matrices belonging

to the (noninteracting) subsystems of the composite. The case of the interacting

subsystems and further discussion about the nature of the SEA evolutions are

beyond the scope of this thesis.

6.1 No-signaling in nonlinear QM theroy

Weinberg proposed that despite the prevalent linearity in formalism, it has not been

concluded conclusively that QM is indeed a linear theory [71]. He also suggested
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Chapter 6 SEA in a Composite System

some nonlinear extensions in the Hamiltonian operators that could be experimen-

tally verified in some high-precision measurements. However, in the following year

in separate works, Gisin [72] and Polchinski [73] showed such a nonlinear extension

through operators will result in the establishment of supraluminal communication

(signaling), and one can have an ‘EPR telephone’ line, which strongly violates

causality. Here, we present Gisin’s Gedankenexperiment for completeness from Ref.

[72].

6.1.1 Gisin’s Gedankenexperiment

In this thought experiment, there is a source sitting midway between two observers

Alice (A) and Bob (B). A pair of entangled qubits in a singlet state (Bell pair) is

emitted from the source (S) along the y-axis. A and B receive each part of the pair,

and when both of them have received parts of the same entangled pair, we say a

channel has been established. S is emitting such pairs continuously maintaining the

channel for a sufficiently long time so that particles are available to both observers

for multiple measurements. A has two detectors of the Stern-Gerlach type, one is

oriented along the z-axis, while the other is rotated 45◦ to it in the z − x plane,

respectively. Let us consider Alice’s system. To encode a message to be sent over

the channel, she is free to choose any one of the detectors and the corresponding

measurement outcomes would be her single-bit messages. Note that this local

operation by Alice does not change the reduced density matrix corresponding to

her subsystem.

Now on the side of Bob, we have a stream of spin-half particles one-half in

the up state and one-half in the down state in either of the detector basis of A

and the order depending on her choice of operation. However, just using local

linear operation B is unable to distinguish which basis the measurements were
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made, and thus no communication takes place using linear Hamiltonians on the

maximally entangled channel. Gisin argued, instead, if Bob would incorporate a

non-bilinear Hamiltonian locally to act on his pair, he can in principle know which

detector setting was used by Alice in encoding her message. This decoding of

Alice’s message upon the nonlinear operation of the Hamiltonian by Bob creates a

scenario where the instantaneous state preparation due to Bell inequality violation

becomes a resource for communication. And signaling takes place.

6.1.2 No-signaling condition

In the language of quantum mechanics, signaling implies supraluminal communi-

cation. During the evolution of a composite system, Polchinski [73] argued that

the necessary and sufficient condition for no-signaling is when the observables

acting on a given noninteracting subsystem depend only on the reduced density

matrix of the same. However, Ferrero et. al., [74] showed that the probability

distribution and observables of a particular subsystem also have to be independent

of the effects of the remaining subsystems for signaling to be precluded. These

definitions stem from imposing causality arguments on the linear structure of QM.

Hence, a nonlinear theory by this logic should end up signaling ex vi termini.

As noted in [74], the no-signaling condition is imposed by requiring that in the

mutually non-interacting subsystems A and B, the evolution of the local observables

of A should only depend on its own reduced state. The SEA formalism, however,

allows us to take a less restrictive view [13]: the only requirement is that, if A and

B are non-interacting, the law of evolution must not allow local unitary operations

within B to affect the time evolution of local (reduced, marginal) state of A. Thus,

the condition ρA = ρ′
A, such as for the two different states ρ ≠ ρA ⊗ ρB and

ρ′ = ρA ⊗ ρB, does not require that dρA/dt = dρ′
A/dt, because local memory of

past interactions, i.e., existing entanglement and/or correlations, may well influence
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the local evolutions without violating no-signaling. This incorporates the idea that

(1) by studying the local evolutions we can disclose the existence of correlations, but

only of the type that can be classically communicated between the subsystems, and

(2) in the absence of interactions the nonlinear dynamics may produce the fading

away of correlations (spontaneous decoherence) but cannot create new correlations.

In linear QM, the system’s composition is specified by declaring: (1) the

Hilbert space structure as direct product H = ⊗M
J=1 HJ of the subspaces of

the M component subsystems, and (2) the overall Hamiltonian operator H =∑M
J=1 HJ ⊗IJ +V where HJ (on HJ) is the local Hamiltonian of the J-th subsystem,

IJ the identity on the direct product HJ = ⊗
K ̸=J HK of all the other subspaces,

and V (on H) is the interaction Hamiltonian. The linear law of evolution, ρ̇ =

−i[H, ρ]/ℏ, has a universal structure and entails the local evolutions through partial

tracing, ρ̇J = −i[HJ , ρJ ]/ℏ − i TrJ([V, ρ])/ℏ. Thus, we recover the universal law

ρ̇J = −i[HJ , ρJ ]/ℏ for the local density operator ρJ = TrJ(ρ) if subsystem J does

not interact with the others (i.e., if V = IJ ⊗ VJ).

As we can see, we cannot have a similar uniform structure for a fully nonlinear

QM, because the subdivision into subsystems must explicitly concur to the structure

of the dynamical law (see Ref. [16] for more on this). Each new partition of the

Hilbert space introduces new equations of motion. Thus one ends up paying a high

price for abandoning linearity in QM. But in result makes the theory compatible

with the compelling constraint that correlations should not build up and signaling

between subsystems should not occur other than per effect of the interaction

Hamiltonian V through the standard Schrödinger term −i[H, ρ]/ℏ in the evolution

law.

We also impose that the physical observables to be considered in composite

quantum dynamics analysis are the ‘local perception’ operators (on HJ). First

defined in [30] together with their ‘deviation from the local mean value’ operators
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and covariance functionals as [77],

(X)J
ρ = TrJ [(IJ ⊗ ρJ)X] , (6.1)

∆(X)J
ρ = (X)J

ρ − IJ Tr
[
ρJ(X)J

ρ

]
, (6.2)

(X, Y )J
ρ = 1

2 Tr
[
ρJ

{
∆(X)J

ρ , ∆(Y )J
ρ

}]
, (6.3)

where ρJ = TrJ(ρ). For a bipartite system AB, the local perception operators

(X)A
ρ (on HA) and (X)B

ρ (on HB) are the unique operators that for a given X on

HAB satisfy for all states ρ the identity

Tr
[
ρA(X)A

ρ

]
= Tr[(ρA ⊗ ρB)X] = Tr

[
ρB(X)B

ρ

]
, (6.4)

which shows that they represent all that A and B can say about the overall

observable X by classically sharing their local states. Operator (X)A
ρ can be viewed

as the projection onto HA of the operator X weighted by the local state ρB of

subsystem B. It is a local observable for subsystem A which, however, depends

on the overall state ρ and overall observable X. Its local mean value TrA[ρA(X)A
ρ ]

differs from the mean value Tr(ρX) for the overall system AB, except when A and

B are uncorrelated (ρ = ρA ⊗ ρB). It was dubbed ‘local perception’ because even

if B performs a local tomography and sends the measured ρB to A by classical

communication, the most that A can measure locally about the overall observable

X is (X)A
ρ .

The overall energy and entropy of the composite system are locally perceived

within subsystem J through the operators (H)J
ρ and (S(ρ))J

ρ defined on HJ by

Eq. (6.1), respectively with X = H, the overall Hamiltonian, and X = S(ρ) =

−kBB ln(ρ), that we call the overall entropy operator, where B ln(x) denotes the

discontinuous function B ln(x) = ln(x) for 0 < x ≤ 1 and B ln(0) = 0. It must be
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carefully observed that the ‘locally perceived overall entropy’ operator (S(ρ))J
ρ is

different from the ‘local entropy’ operator S(ρJ) = −kBBJ ln(ρJ). Not only that,

their mean values Tr
[
ρJ(S(ρ))J

ρ

]
= −kB Tr[(ρJ ⊗ ρJ)Bln(ρ)] and Tr[ρJS(ρJ)] =

−kB Tr[ρJ ln(ρJ)] are also different. Only when ρ = ρJ ⊗ ρJ they are related

by Tr
[
ρJ(S(ρ))J

ρ

]
= Tr[ρJS(ρJ)] + Tr[ρJS(ρJ)] = −kB Tr[ρ ln(ρ)]. Likewise, for

the ‘locally perceived overall Hamiltonian’ operator (H)J
ρ we can make similar

statements. When the overall observable X is ‘separable for subsystem J’, in the

sense that X = XJ ⊗ IJ + IJ ⊗ XJ then, even if ρ ̸= ρJ ⊗ ρJ , the deviations and

covariances reduce to their local versions (special case),

∆(X)J
ρ = ∆XJ = XJ − IJ Tr[ρJXJ ] , (6.5)

(X, Y )J
ρ = Tr[ρJ{∆XJ , ∆YJ}]/2 . (6.6)

Now, to formalize the no-signaling definition following [13] as discussed above,

we impose that if A and B are non-interacting, a local unitary operation on B

should not affect the evolution of A. So, consider the composite AB in the state ρ,

where a local arbitrary unitary operation UB on B (U †
BUB = IB) changes ρ to

ρ′ = (IA ⊗ UB) ρ (IA ⊗ U †
B) . (6.7)

Using the partial cyclic properties of the partial trace,

TrB[(IA ⊗ XB)ZAB] = TrB[ZAB(IA ⊗ XB)] ,

TrA[(IA ⊗ XB)ZAB(IA ⊗ YB)] = XB TrA(ZAB)YB ,
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we obtain the identities

ρB = TrA[(IA ⊗ U †
B) ρ′ (IA ⊗ UB)] = U †

Bρ′
BUB, (6.8)

ρ′
A = TrB[(IA ⊗ UB) ρ (IA ⊗ U †

B)] = TrB[(IA ⊗ U †
BUB) ρ]

= TrB[(IA ⊗ IB) ρ] = ρA. (6.9)

This establishes that a local operation on B does not affect the local state ρA of A,

hence the usual idea [74] that for no-signaling it is sufficient that the dynamical

model implies evolutions of local observables that depend only on ρA. However,

this must be noted that it is a sufficient condition and not a necessary one. We

prove next that not only the local reduced state ρA but also the local perception

operators (F (ρ))A of any well-defined nonlinear function F (ρ) of the overall state

(such as the function S(ρ) defined above for entropy) are not affected by local

operations on B according to Eq. (6.7). And since the SEA formalism is based on

such local perception operators, this is an important lemma in the proof that SEA

is no-signaling.

So, let us apply Eq. (6.7) to a function of F (ρ) as locally perceived by A

represented, according to definition Eq. (6.1), by its partial trace weighted with

respect to ρB,

(F (ρ))A = TrB[(IA ⊗ ρB)F (ρ)]. (6.10)

A function of ρ is defined from its eigenvalue decomposition by F (ρ) = V F (D)V † =∑
j F (λj) |λj⟩⟨λj|, where ρ = V DV †, D = ∑

j λj |j⟩⟨j|, and V = ∑
j |λj⟩⟨j|. Since

unitary transformations do not alter the eigenvalues,

F (ρ′) = V ′F (D)V ′† where V ′ = (IA ⊗ UB)V , (6.11)
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and therefore, using Eq. (6.8) in the last step, we obtain

(F (ρ′))A = TrB[(IA ⊗ ρ′
B)F (ρ′)]

= TrB[(IA ⊗ ρ′
B) (IA ⊗ UB)V F (D)V †(IA ⊗ U †

B)]

= TrB[(IA ⊗ U †
Bρ′

BUB) V F (D)V †]

= TrB[(IA ⊗ ρB) F (ρ)] = (F (ρ))A . (6.12)

This confirms that local operations on B do not affect the local perception operators

of A and, therefore, their proper use in nonlinear QM does not cause signaling

issues.

Considering all of this, we can formally write the no-signaling condition as

dρJ

dt
= f(ρJ , (Ck)J). (6.13)

6.2 The composite EoM

We are now ready to introduce the last but not least essential ingredient of a

general composite-system nonlinear QM, namely, the system’s structure-dependent

expressions of the separate contribution of each subsystem to the dissipative term

of the equation of motion for the overall state ρ. As discussed above (and clearly

recognized in the early SEA literature [13, 16, 30]), the composite-system nonlinear

evolution should reflect explicitly the internal structure of the system, essentially

by declaring which subsystems are to be prevented from nonphysical effects such as

signaling, exchange of energy, or build-up of correlations between non-interacting

subsystems. In terms of the notation introduced above, the structure proposed

in [16, 30] for the dissipative term of the dynamics to be added to the usual
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Hamiltonian term is as follows

dρ

dt
= − i

ℏ
[H , ρ] −

M∑
J=1

{
DJ

ρ , ρJ

}
⊗ ρJ , (6.14)

where the ‘local dissipation operators’ DJ
ρ (on HJ) may be nonlinear functions of the

local observables of J , the reduced state ρJ , and the local perception operators of

overall observables. For the dissipative term to preserve Tr(ρ), operators
{
DJ

ρ , ρJ

}
must be traceless. To preserve Tr(ρH) [and possibly other conserved properties

Tr(ρCk)], operators
{
DJ

ρ , ρJ

}
(H)J

ρ [and
{
DJ

ρ , ρJ

}
(Ck)J

ρ ] must also be traceless. The

rate of change of the overall system entropy s(ρ) = −kB Tr[ρ ln(ρ)] is

ds(ρ)
dt

= −
M∑

J=1
Tr
[{

DJ
ρ , ρJ

}
(S(ρ))J

ρ

]
, (6.15)

and the local nonlinear evolution of subsystem J is obtained by partial tracing

over HJ , in general,

dρJ

dt
= − i

ℏ
[HJ , ρJ ] − i

ℏ
TrJ([V, ρ]) −

{
DJ

ρ , ρJ

}
. (6.16)

One can notice, for N = 1, Eq. (6.14) reduces to Eq. (2.55) [15, 30, 77]. Finally,

to introduce the SEA assumption in the spirit of the fourth law of thermody-

namics [17, 24], one way is employing a variational principle. We first observe

from Eq. (6.15) that the rate of entropy change contributed by subsystem J

is directly proportional to the norm of operator DJ
ρ , so there is no maximum

entropy production rate because we can trivially increase it indefinitely by simple

multiplication of DJ
ρ by a positive scalar. But we can fix that norm, and maximize

against the direction in operator space, to identify, for each given state ρ, the

operators DJ
ρ that point in the direction of steepest entropy ascent. To this end,

to recover the original SEA formulation [30] let us maximize Eq. (6.15) subject
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to the conservation constraints Tr
[
{DJ

ρ , ρJ} (Ck)J
ρ

]
= 0 where C1 = I, C2 = H,

and Ck are other conserved properties (if any), together with the fixed weighted

norm constraints Tr
[
ρJ(DJ

ρ )2
]

= const (for more general SEA formulations in

terms of a different metric as necessary to incorporate Onsager reciprocity see

[17, 24]). Introducing Lagrange multipliers βJ
k and τJ for the conservation and

norm constraints, respectively, and imposing vanishing variational derivatives with

respect to operators DJ
ρ at fixed ρ and ρJ ’s (derivation details in [16, 17], and in

chapter 2) yields

2τJDJ
ρ = (B ln(ρ))J

ρ +∑
ℓβ

J
ℓ (Cℓ)J

ρ . (6.17)

where the multipliers βJ
ℓ must solve the system of equations obtained by substituting

these maximizing expressions of the DJ
ρ ’s into the conservation constraints,

∑
ℓ

βJ
ℓ Tr

[
ρJ

{
(Cℓ)J

ρ , (Ck)J
ρ

}]
= − Tr

[
ρJ

{
(B ln(ρ))J

ρ , (Ck)J
ρ

}]
. (6.18)

When C1 = I and C2 = H determine the conserved properties and Eqs. (6.18)

are linearly independent, using Cramers’ rule, properties of determinants, and

definitions (6.2) and (6.3) we can compute βJ
i associated with each local subsystem.

We first figure out the ΩJ by extending the definition used in Eq. (2.44) and rescale

it appropriately,

ΩJ =

∣∣∣∣∣∣∣∣
tr
(

ρJ

2

{
(C1)J , (C1)J

})
tr
(

ρJ

2

{
(C1)J , (C2)J

})
tr
(

ρJ

2

{
(C2)J , (C1)J

})
tr
(

ρJ

2

{
(C2)J , (C2)J

})
∣∣∣∣∣∣∣∣ . (6.19)

Upon expressing this, we can consider the βJ
k as under,

βJ
1 = 1

ΩJ

∣∣∣∣∣∣∣∣
tr
(

ρJ

2

{
(C1)J , (B ln(ρ))J

})
tr
(

ρJ

2

{
(C1)J , (C2)J

})
tr
(

ρJ

2

{
(C2)J , (B ln(ρ))J

})
tr
(

ρJ

2

{
(C2)J , (C2)J

})
∣∣∣∣∣∣∣∣ , (6.20)
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βJ
2 = 1

ΩJ

∣∣∣∣∣∣∣∣
tr
(

ρJ

2

{
(C1)J , (B ln(ρ))J

})
tr
(

ρJ

2

{
(C1)J , (C1)J

})
tr
(

ρJ

2

{
(C2)J , (B ln(ρ))J

})
tr
(

ρJ

2

{
(C2)J , (C1)J

})
∣∣∣∣∣∣∣∣ . (6.21)

After finding these βJ
k s we are essentially done with the construction of EoM for

composite SEA. The local dissipation operators can be explicitly written as

{
DJ

ρ , ρJ

}
=

1
2τJ

∣∣∣∣∣∣∣∣∣∣∣∣

ρJ(B ln(ρ))J 1
2

{
(C1)J , ρJ

}
1
2

{
(C2)J , ρJ

}
tr
(

ρJ

2

{
(C1)J , (B ln(ρ))J

})
tr
(
ρJ((C1)J)2

)
tr
(

ρJ

2

{
(C1)J , (C2)J

})
tr
(

ρJ

2

{
(C2)J , (B ln(ρ))J

})
tr
(

ρJ

2

{
(C2)J , (C1)J

})
tr
(
ρJ((C2)J)2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
tr
(

ρJ

2

{
(C1)J , (C1)J

})
tr
(

ρJ

2

{
(C1)J , (C2)J

})
tr
(

ρJ

2

{
(C2)J , (C1)J

})
tr
(

ρJ

2

{
(C2)J , (C2)J

})
∣∣∣∣∣∣∣∣

.

(6.22)

6.3 SEA in a two-qubit composite

Gisin et. al., showed that although stochastic formalism using Lindbladian formal-

ism can accommodate nonlinearity while respecting no-signaling [36], the formalism

itself is riddled with many conceptual shortcomings (see Section (2.1) for a short

survey of the same). Fererro et. al., showed that a nonlinear formalism can be

accommodated only if the said characteristic exists in the time evolution of the

quantum system and not in the state space or in the structure of the operators

[74]. A few years later it was shown in Refs. [75, 76] that the least nonlinearity

that can be accepted in the QM formalism is if it respects the convex quasilinear

mapping. In this section, we write the SEA EoM for two-qubit composites in the

form of noninteracting separable, maximally-entangled, and Werner state cases. In

the process, we will see Eq. (6.13) is being respected [77].
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6.3.1 Noninteracting separable two-qubit composite

A. The case with ρ = ρA ⊗ ρB:

Let us consider a bipartite system, whose Hilbert space is given as H = HA ⊗ HB.

We call the system non-interacting if,

Cm = (Cm)A ⊗ IB + IA ⊗ (Cm)B, (6.23)

and uncorrelated if ρ = ρA ⊗ ρB so that,

S(ρ) = s(ρ)A ⊗ IB + IA ⊗ s(ρ)B. (6.24)

We have used S(ρ) = B ln(ρ), and s(ρ)J = BJ ln(ρJ) [30]. Using these, we can

write the Eq. (6.14) as,

dρ

dt
= −i[H , ρ] −

{
DA, ρA

}
⊗ ρB − ρA ⊗

{
DB, ρB

}
. (6.25)

Which implies [30],

trB

(
dρ

dt

)
= dρA

dt
= −i[HA, ρA] −

{
DA, ρA

}
, (6.26)

trA

(
dρ

dt

)
= dρB

dt
= −i[HB, ρB] −

{
DB, ρB

}
. (6.27)

We see for the strong separability [13] considered here, each subsystem evolves

as if it were strictly isolated, and its evolution equation reduces to the form of

Eq. (2.53) for an indivisible system. The definition of no-signaling as in Eq. (6.13)

is also satisfied trivially.
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6.3 SEA in a two-qubit composite

B. The case with ρ = ∑
i piρ

i
A ⊗ ρi

B for pi ≥ 0:

Consider the following separable density matrix,

ρm = µ(ρA ⊗ ρB) + 1 − µ

4 I4, (6.28)

achieved by introducing white noise to the separable state ρA ⊗ ρB and a mixing

parameter 0 ≤ µ ≤ 1. We can use the general Bloch sphere representation for

N level systems using generators ({Γi}) of the SU(N) group as given in previous

chapter, Eq. (5.1) [63, 64, 69]. For the case of a composite two-qubit system,

the density matrix can be represented by points in a 15-dimensional sphere of

unit radius. However, the mapping is not bijective, as not every point in such a

sphere represents a valid density matrix. Hence, treating the problem generally

is quite difficult. We restrict our attention to the mixed states resulting in the

eigenvalues of the four-level system being of the form λ1 = λ2 = 1 −
√

3r

4 , and

λ3 = λ4 = 1 +
√

3r

4 as in Eq. (5.54) with α1 =
√

3. We can expand the expression

of ρm in the following manner

ρm = 1
4

[
I4 + µ

(
(rA · σA) ⊗ I2 + I2 ⊗ (rB · σB) + (rA · σA) ⊗ (rB · σB)

)]
(6.29)

The states as expressed above are contained in ρ4 of Eq. (5.31) with eigenvalues

given by Eq. (5.38) if we consider rJ,3 = 0. We also consider ρB = 1
2I2. So we make

the following assumptions to ease our computation. The non-zero components of the

Bloch vector giving real eigenvalues of the form considered here are r5 = r8 = rA,1√
6

,

and r11 = r14 = rA,2√
6

, where, rA,i is the ith component of the qubit-Bloch vector of

the system A with rA = µrA. Without any loss in generality, for this computation,

we have considered rA,3 = 0. And we have rB = 0 by construction. This implies,
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Chapter 6 SEA in a Composite System

we get r =
√

2
r2

A,1

6 + 2
r2

A,2

6 = rA√
3

. ρ and in extension ρm will have support on all

eigenvalues if r <
1√
3

implying rA < 1.

As seen in the expression of Eq. (6.22), we need to compute various trace

functions as well as commutation and anti-commutation relations. To perform

this, we make use of the operator formalism introduced in Eq. (5.56) and find the

following relations. We e compute the operator ln(ρm) as under,

ln(ρm) = 1
4 [ln(λ1) + ln(λ2) + ln(λ3) + ln(λ4)] I4

+
√

6
4
√

3r
[ln(λ4) + ln(λ3) − ln(λ2) − ln(λ1)] r · Γ,

(6.30)

ln(ρm) = 1
2

[
ln
(

1 − 3r2

16

)]
I4 +

√
6

2
√

3r

[
ln
(

1 +
√

3r

1 −
√

3r

)]
r · Γ. (6.31)

It is to be noted since ρm has support on all the eigenvalues, B = I4. From

Eq. (6.29), we have (ρm)A = 1
2(I2 + rA ·σA), with rA = µrA, and (ρm)B = 1

2I2. The

operators (ln(ρm))J are as given,

(ln(ρm))A = tr2 ((I ⊗ (ρm)2) ln(ρm)) ,

= 1
2 ln

(
1 − r2

A

16

)
I2 + 1

2rA

ln
(1 + rA

1 − rA

)
rA · σA,

(6.32)

(ln(ρm))B = tr1 (((ρm)1 ⊗ I2) ln(ρm)) ,

= 1
2

[
ln
(

1 − r2
A

16

)
+ rA ln

(1 + rA

1 − rA

)]
I2.

(6.33)

For the rest of the computation, let us use the following shorthand

A = ln
(

1 − r2
A

16

)
+ rA ln

(1 + rA

1 − rA

)
(6.34)

B = ln
(

1 − r2
A

16

)
+ 1

rA

ln
(1 + rA

1 − rA

)
(6.35)

Using, Eqs. (6.32) - (6.33)and expressions for reduced (ρm)J we can get the following
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6.3 SEA in a two-qubit composite

expressions for locally perceived entropy operators (B ln(ρm))J for each of the

subsystems

(ρm)A(B ln(ρm))A = 1
4AI2 + 1

4BrA · σA, (6.36)

(ρm)B(B ln(ρm))B = 1
4AI2. (6.37)

Now let us consider the Hamiltonian representative of noninteracting systems.

Denoting, HJ = ωJhJ · σJ , we can write

H = HA ⊗ I2 + I2 ⊗ HB. (6.38)

We express the locally perceived Hamiltonians ((C2)J in the Section (6.2)) using

(re)A = hA · rA as,

(H )A = ωAhA · σA, (6.39)

(H )B = ωA(re)AI2 + ωBhB · σB. (6.40)

Using these, we express the following trace relations which are required to compute

βJ
i from Eqs. (6.19) - (6.21)

tr
(
(ρm)A(H )A

)
= ωA(re)A, (6.41)

tr
(
(ρm)B(H )B

)
= ωA(re)A, (6.42)

tr
(
(ρm)A((H )A)2

)
= ω2

A, (6.43)

tr
(
(ρm)B((H )B)2

)
= ω2

A(re)2
A + ω2

B, (6.44)

tr
(

(ρm)A

2
{
(H )A, (B ln(ρm))A

})
= ωA

2 B(re)A, (6.45)

tr
(

(ρm)B

2
{
(H )B, (B ln(ρm))B

})
= ωA

2 A(re)A, (6.46)
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tr
(
(ρm)A(B ln(ρm))A

)
= 1

2A, (6.47)

tr
(
(ρm)B(B ln(ρm))B

)
= 1

2A. (6.48)

Thereafter, putting these expressions into the Eqs. (6.19) - (6.21), we get the follow-

ing expressions

ΩA = ω2
A(1 − (re)2

A), (6.49)

ΩB = ω2
B, (6.50)

βA
1 = ω2

A

2ΩA

(
A − B(re)2

A

)
, (6.51)

βB
1 = ω2

B

2ΩB
A, (6.52)

βA
2 = ωA(re)A

2ΩA
(A − B) , (6.53)

βB
2 = 0. (6.54)

Let us write down the expressions for the anti-commutation relations as under

{
(H )A, (ρm)A

}
= ωA (hA · σA + (re)AI2) , (6.55){

(H )B, (ρm)B

}
= (ωBhB · σB + ωA(re)AI2) . (6.56)

Therefore, using the multipliers in Eqs. (6.49) - (6.54), the anti-commutations of

Eqs. (6.55) - (6.56) into the expression for DJ in Eq. (6.17) to compute
{
DJ , (ρm)J

}
.

However, since ρm is separable, we use DJ and we get after some tedious algebra,

{
DA, (ρm)A

}
= A − B

4τA(1 − (re)2
A) [(re)AhA − rA] · σA, (6.57)

{
DB, (ρm)B

}
= 0. (6.58)

Clearly, as is evident, here also, the reduced density dynamics in Eq. (6.58)
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follow the form of Eq. (6.13). The EoM Eq. (6.57) gives rise to the solution of the

form in Eq. (3.17), which eventually mixes the subsystem A, and drives it towards

the local maximally mixed state, which in effect turns the composite towards the

global maximal mixed state. Moreover, as it is also evident, despite the ‘locally

perceived’ operators having contributions from the other subsystems, the overall

system dynamics does not contain that contribution. And signaling is prevented

[77]. To see whether the separate energy conservation conditions are satisfied, we

can show from straightforward computation, that this indeed, also holds. Similar

computations involving ρA = 1
2I2 and ρB = 1

2 (I2 + rB · σB) with rB,3 = 0 can be

carried out to reach the analogous conclusion, however, in this case, the nonzero

components of the Bloch vector will be r4 = r9 = rB,1√
6

, and r10 = r15 = rB,2√
6

. The

case with ρJ = 1
2 (I2 + rJ · σJ) with rJ,3 = 0 leads to eigenvalues of the composite

of the form λ1 = 1 −
√

6r

4 , λ2 = λ3 = 1
4, and λ4 = 1 +

√
6r

4 , where the nonzero

components of the Bloch vector are r4 = r9 = rB,1√
6

, r5 = r8 = rA,1√
6

, r10 = r15 = rB,2√
6

,

and r11 = r14 = rA,2√
6

. Carrying out similar analytical computation with eight

nonzero Bloch vector components is quite non-trivial and is beyond the scope of

this thesis. In what follows we will consider the maximally mixed-state to complete

our discussion on finding SEA EoM for two-qubit composites.
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6.3.2 Noninteracting two-qubit mixed composite

Bell diagonal states [89, 90] with Bell vector b = (bx, by, bz)

ρBell = 1
4

I4 +
∑

i={x,y,z}
bi · σi ⊗ σi

 , (6.59)

= 1
4



1 + bz 0 0 bx − by

0 1 − bz bx + by 0

0 bx + by 1 − bz 0

bx − by 0 0 1 + bz


, (6.60)

are identified in the notation of the previous chapter by the three parameters

α1 = bz

α2 = −2bxby

r2 = b2/3 where b2 = b2
x + b2

y + b2
z

4 λ1 = 1 − bx − by − bz,

4 λ2 = 1 − bx + by + bz,

4 λ3 = 1 + bx − by + bz,

4 λ4 = 1 + bx + by − bz.

(6.61)

The states thus introduced can be used to classify a large class of states. These

include the standard Bell states for bx = by = bz = −1, or −bx = by = bz = 1. They

can be used to denote Werner states [84, 91] for bx = by = bz = −w. These Bell

diagonal states represent maximally entangled pure composite (the Bell states),

can represent mixed entangled states (Werner states) and can represent states with

color noise with support only on two eigenbases of ρ4, thus providing a plethora of

flavor to choose from. Proving no-signaling for general Bell diagonal states thus
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6.3 SEA in a two-qubit composite

becomes quite useful. Since ρBell
A = ρBell

B = I2/2, we readily obtain

(S(ρBell))A = − 1
2BLI2, (6.62)

(S(ρBell))B = − 1
2BLI2. (6.63)

where L equals the logarithm of the product of the nonzero eigenvalues of ρBell,

e.g., for a non-singular ρBell,

L = ln(λ1λ2λ3λ4). (6.64)

Thus the expressions ρBell
J (S(ρBell))J can be evaluated as below,

(ρBell)A(B ln(ρBell))A = − 1
4BLI2, (6.65)

(ρBell)B(B ln(ρBell))B = − 1
4BLI2. (6.66)

Now let us consider the Hamiltonian representative of noninteracting systems. We

find the locally perceived Hamiltonians (C2)J as using Eq. (6.38),

(H )A = HA, (6.67)

(H )B = HB. (6.68)

Using these, we express the following trace relations which are required to compute

βJ
i as

tr
(
(ρBell)A(H )A

)
= 0, (6.69)

tr
(
(ρBell)B(H )B

)
= 0, (6.70)

tr
(
(ρBell)A((H )A)2

)
= ω2

A, (6.71)
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tr
(
(ρBell)B((H )B)2

)
= ω2

B, (6.72)

tr
(

(ρBell)A

2
{
(H )A, (B ln(ρBell))A

})
= 0, (6.73)

tr
(

(ρBell)B

2
{
(H )B, (B ln(ρBell))B

})
= 0, (6.74)

tr
(
(ρBell)A(B ln(ρBell))A

)
= − 1

2BL, (6.75)

tr
(
(ρBell)B(B ln(ρBell))B

)
= − 1

2BL. (6.76)

Thereafter, putting these expressions into the defining Eqs. (6.19-6.21), we get the

following expressions

ΩA = ω2
A, (6.77)

ΩB = ω2
B, (6.78)

βA
1 = − 1

2BL, (6.79)

βB
1 = − 1

2BL, (6.80)

βA
2 = 0, (6.81)

βB
2 = 0. (6.82)

Let us write down the expressions for the anti-commutation relations as under

{
(H )A, (ρBell)A

}
= ωAhA · σA, (6.83){

(H )B, (ρBell)B

}
= ωBhB · σB. (6.84)

Therefore, using the multipliers in Eqs. (6.77-6.82), the anti-commutations of

Eqs. (6.83-6.84) into the expression for DJ in Eq. (6.17) to compute
{
DJ , (ρBell)J

}
.

However, since ρBell is nonseparable, we use FJ instead of DJ and we get after
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some algebra,

{
FA, (ρBell)A

}
= 0, (6.85){

FB, (ρBell)B

}
= 0. (6.86)

These lead us to compute the expression for separate energy conservation as required

by no-signaling. We have D =
{
FA, (ρBell)A

}
⊗ (ρBell)B + (ρBell)A ⊗

{
FB, (ρBell)B

}
.

For sub-system A using Eqs. (6.67-6.68), and (6.85-6.86),

(
(H )A ⊗ I2

)
D = 0. (6.87)

The same is trivially true for subsystem B. We see that the solution for the

Bell diagonal states is non-dissipative and energy-conserving. Thus, the SEA is

no-signaling for all these cases [77].

Summary

In brief, we have discussed the concept of signaling in the framework of non-linearity

in quantum mechanics. We presented Gisin’s argument. We further discussed the

concept of no-signaling in the context of SEA and showed, how by relaxing and

broadening the definition of no-signaling, we can accommodate a larger class of

non-linear formalism than previously anticipated. We then used this definition to

construct the SEA EoM for a composite system. Finally, we considered the cases

of separable and non-separable two-qubit composites to write the EoM and show

that SEA respects no-signaling.
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I reappear by that sea,
with the soothing waves beneath me,
my shadows embed my new reality,

preapred for new learnings.





7.1 In conlcusion

This is where we conclude our story. We have explored some of the

intricacies of the SEA theory as the fourth law of thermodynamics

and its application to finite-level quantum systems. And now we must

present a summary of the key aspects that we have garnered from this discussion.

In this concluding chapter, we present our findings. Then we will comment on the

limitations of the thesis and present some ideas which represent the future scope

of this work.

7.1 In conlcusion

We have begun this thesis by discussing the motivation, foundation, and derivation

of the BSEA. There in chapter 2, we saw the underlying geometric structure of the

theory, and we understood the crucial role played by the concept of stability in

the formalism presented in this thesis. This chapter serves both as a review of the

literature and as an introduction to the tenets of SEA and thus plays an important

role in the development of the thesis.

In the vein of the above, one must also address the cases of mesoscopic system

evolution, and local entropy decrease observations. As it can be argued that while

the steepest entropy ascent formalism imposes a non-negative rate of entropy

generation, there are cases in nature that behave to the contrary, at least for a

short amount of time. So, it may be said that from this point of view, SEA is

not a general law of dynamics. However, it can be also argued that considering a

quantum observable - upon making a single measurement and we get an outcome,

which may be above or below the mean value. On repeated measurements on

an ensemble of identically prepared systems in the same state, we get statistics

of outcomes. The mean value may be positive, but some parts of the statistical

distribution of the outcomes may well be in the negative. In that state, that

143



Chapter 7 Conclusions and Future Scope

observable has some uncertainty. There is no surprise, of course, in any state

there are always observables that have some uncertainty. Now assume that this

observable happens to be such that its mean value is the rate of change of the

entropy functional. Since it is the meanvalue that is always positive, we can say

this is tantamount to claiming the rate of entropy production is always positive.

And thus the generality of SEA formalism can be retained.

Following this, chapter 3 presents the first finite-level quantum system, the

trivial case of a qubit or a two-level system to be studied under the SEA formalism.

We presented the exact analytical result due to Beretta in this chapter. However,

the important role played by this chapter lies in the development and application of

our key approximation scheme, the FLM method. We deployed FLM for the qubit

case and showed that depending on the choice of ρ, the scheme has the capacity to

provide a good approximation to the exact result. A justification for such a method

is that βi’s are not always rapidly changing, and it is sometimes more intriguing

to know the nature of a dynamics rather than an accurate depiction of the same.

FLM also simplifies SEA nonlinearity which makes the theory easily tractable and

the EoM looks more appealing. In this chapter, using Bloch representation we were

also able to demonstrate the concept of ‘steepest entropy ascent’ by showing the

rise of the trajectory in the state space over the entropy hill, which is an interesting

by-product of our analysis.

But aesthetics and ease of access aside, FLM must provide some real benefit over

the full numerical solution, otherwise one may justly question the point of using

such a scheme. To answer this, we present chapter 4 to the readers. where we see

FLM in its full glory. We find out that FLM is not only a fairly good approximation

for higher dimensional systems but also it is very reliable in representing the key

aspects of the dynamics. Our plots of comparison of probability amplitude for a

CTQW on a cycle graph with the full numerical solution are testaments to our
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claim. Not only that, a similar comparison of results for studying entropy and

entropy generation confirms that FLM works fairly well in initial and later times

during the dynamics too.

There is another set of conclusions to be made from this chapter. The use of CTQW

to model SEA evolution for a N−level system, or the modeling of decoherence in

CTQW using SEA has been a novel approach that opens up a plethora of research

avenues. We have for the first time used a first-principle approach to decoherence

in the study of CTQW. This leads to the introduction of SEA in the arena of

quantum computation and quantum information science. For a given τ , one can

now analytically study mixing in QW, without resorting to studying the limiting

value of the time-averaged decay of unitarily evolving amplitudes, or usage of

master equations of the Lindbladian type. We have seen through the dependence

of the diagonal elements of the Graph Hamiltonian in the FLM solution that the

decay to uniform distribution is highly reliant on the degree of the graph, which

implies dependence on the dimensionality of the lattice on which the walk is being

performed. Also, we see that τ can be used to speed up the decay or to slow it

down, taking forever to decay in the case of large values. Our results show that by

properly tuning τ , one can swing between localization and complete delocalization.

Through the results of the chapters 3 and 4, we fulfill the first two objectives of

this thesis as discussed in the section 1.6.

Motivated by the success of FLM in studying single finite-level systems under

SEA evolution, it is only natural that we would want to extend our formalism to

study composite system evolution. However, as was the case presented by Beretta

in the case of a qubit, we wanted to figure out a way to analytically study the

simplest of composite, namely the two-qubit composite. The results in chapter 5

serve a very important purpose in this regard. We have attempted to find analytical

root expressions for Bloch representation for levels N = 3 and N = 4. These results
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are important on their own and can be used outside the context of this thesis. It

is very well understood how the analytical roots of N = 2 help us characterize the

Bloch vector representation of a qubit. Similarly, the geometry of Bloch vector

representation for a qutrit or a qudit with d = 4 had been studied in the literature,

but not having a parametric form for finding analytical roots was a handicap to

the analytical studies of the density matrices evolution in those cases. Our results

are well suited for that purpose. Consider the qudit case, for example. We have

found the roots in the form of three parameters (r, α1, and α2). By appropriately

tuning these, one can get all the roots of the case of a four-level system. This

result in particular opens up the possibility of numerous studies similar to what

the qubit case has done.

Our second contribution from this chapter is in finding the analytical expressions for

the behavior of F (ρ). In our approach, we have exploited the degeneracy involved

in the roots. The formalism allows us to find the analytical expression for the real

functions be it ρ2, ln(ρ), or exp(ρ) without being bothered about the eigenvector

expressions. Moreover, this formalism allows us to take analytical traces over these

functions, as the expressions are decomposed into trace-less and non-zero trace

parts, which can be easily computed. Besides, our formalism allows us to take

the products of the form ρ ln(ρ) easily by exploiting the relations between the

generalized Gell-Mann matrices, which is an added advantage.

As discussed as objective 3 in the section 1.6, we do stumble upon a philosophical

problem of composite system studies via SEA. As it is oft-mentioned in the literature,

a general nonlinear theory of QM signals. Thus, it became imperative that we

address this issue with SEA and check that it does not signal. We thus scrutinize

the construction of the SEA EoM and especially Beretta composite SEA EoM

(BCSEA). We begin by understanding the conventional definition of no-signaling,

and then show that while it is necessary, this definition is not sufficient. We relax
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the no-signaling criteria to accommodate a larger class of nonlinear evolution

under which the local operation performed in one of the noninteracting subsystems

does not affect the outcome of the other. We show that by construction, SEA

is no-signaling. In the process, we cast some more light on the details of the

composite EoM formalism hitherto missing from the relevant literature. We then

proceed to consider some examples. Which are also novel results in regard to

SEA. We study the trivial separable case and a nontrivial one. We explicitly show

for the second case how via the application of perceived functionals and their

maximization, the separable states are locally driven to maximally mixed states.

We further considered the case of non-separable correlated composites. We present

some novel results concerning the use of Bell diagonal states under SEA and show

how they form non-dissipative limit cycles in the local evolution under SEA. Our

results conclusively show that SEA is no-signaling, and establish that SEA and

theories of the same class are no-signaling.

Thus we complete the three main objectives of this thesis and in the process as

by-products get some helpful results of the Bloch representation.

7.2 Limitations and future scope

Nothing is perfect, neither is this thesis. There are some serious limitations of this

thesis that have existed because of temporal bound or resource bound on our part.

It is also true, even if we addressed those issues some other thing would have been

mentioned in this section. So without further ado, we state the following.

Firstly, chapter 2 does not do service to the recent works in the SEA literature.

Especially the works by von Spakovsky and group is left undiscussed. The main

reason for such exclusion is that those works are beyond the scope of this thesis,

which is why we have mentioned them in section 1.2 but not discussed in detail.
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However, those results are quite intriguing, especially von Spaovsky’s work on the

typicality connection [19]. It is one of the future scope of this thesis, as the results

stated here can be applied to compare the outcomes of fluctuation theorem-related

results.

In chapter 3, we could have considered more cases and provided a non-equatorial

view of the evolution also. However, since Beretta’s original exact solution pertained

to that region, for ease of comparison, we also restrained ourselves in the same

domain.

In chapter 4, we believe we could have considered various graphs and not only

the cycle graph. In fact, we performed numerical analysis on the hypercube graph

and found similar results. We have retained those results from the discussion

because we think it would be prudent to present the same in the context of more

general graphs. This is also why we could not discuss mixing in detail here.

Our work in chapter 5 could have been augmented by some discussion on the

geometric aspects of the representations given that we already presented some in

the context of SEA interpretation. However, being restricted by time and resources,

we thought it would be better to leave the discussion of the roots and their relation

to the geometry of these higher-dimensional Bloch spheres for future work.

Finally, in chapter 6 we could not actually show the analytical results for the

composites and had to restrain ourselves within the discussion of the EoMs only.

We were seriously restricted by the limitation of time, and the computations of

chapters 5 along with the current one took more time than we had allotted ourselves

to. However, these works have presented us with the following ideas that we wish

to move forward with in detail study.

1. The application of SEA in CTQW has provided a gateway to the domain of

quantum information and computation sciences. The effect of decoherence

148



7.2 Limitations and future scope

in spatial search applications, mixing of walks, and application of SEA in

general random graphs such as Erdös-Renyi random graphs.

2. Our results of Bloch representation can be applied to study the two-qubit

composite evolution analytically, along with studying the rich geometry

of those higher-dimensional objects under similar evolutions. We wish to

perform similar studies as we did in qubit evolution through the Bloch sphere.

3. Finally, the EoM for the composite opens up a plethora of research opportu-

nities. As discussed above, we wish to analytically solve the two-qubit cases

using the EoMs derived in this thesis.

4. We can use the BCSEA to solve many body QWs. And may also enquire

whether FLM or similar approximations can be used there as well.

5. The BCSEA, along with mean-field approximations can be used to attempt

to find the equation for spontaneous decoherence in larger quantum systems,

for example, the Bose-Einstein condensate (BEC).
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