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Abstract

The ansatz of steepest entropy ascent (SEA) has been recently identified as the
fourth law of thermodynamics. The law describes a system’s evolution from an
out-of-equilibrium state toward the globally unique stable equilibrium state of
maximum entropy. The SEA ansatz sets the second law of thermodynamics as a
foundation to merge mechanics and thermodynamics. We present a brief introduc-
tion to the fundamental tenets of the theory and provide the underlying principles
contributing to formalism. SEA equation of motion is highly nonlinear; its exact
analytical solutions are limited and available only for some very special cases.
We have successfully developed an approximate analytical tool called the fixed
Lagrange’s multiplier (FLM) method to help us analytically solve the two-level
and higher dimensional systems.

Quantum walks are used as a universal model of computation. Using this model,
we analyze a single component N —level system and apply our FLM scheme to solve
the SEA equation of motion analytically. A comparison of the solution obtained
using FLM, and the complete numerical solution is presented, and we notice strong
agreement. Regions of maximum entropy production rate in agreement with the
SEA have been identified.

To extend the SEA analysis to simple composites involving two qubits, we need
analytical roots and relevant results for the case of four-level Bloch vector formal-
ism. We present a general framework for the characterization of N—level Bloch
parametrization. We provide analytical roots for the N = 3 level and completely
parametrized roots for the N = 4 level. We also provide a framework for finding
an analytical trace of general operators in this representation.

Lastly, we address the problem of no-signaling in a nonlinear quantum theory. It
has been well established in the literature that a nonlinear theory of quantum
mechanics allows for faster-than-light communication (signaling) between two
noninteracting parts of a composite system. However, we show that SEA is built
to respect no-signaling. We present the equation of motion for composite systems.
We consider the cases of separable composites and nonseparable entangled /mixed
composites in the form of Bell diagonal states. Our results confirm that the SEA
is a valid theory involving nonlinear dynamics that respects no-signaling criteria
and presents a fundamental approach to the problem of decoherence modeling for

open and closed quantum systems.



Keywords: Fourth law of thermodynamics, Steepest entropy ascent, Sponta-
neous decoherence, Entropy generation, Nonequilibrium dynamics, Bloch represen-

tation, No-signaling, Nonlinear quantum theory
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Introduction






I stood by the edge,
of the sea of knowledge

the dark of the unknown abyss,

was terrifying.






INCE the introduction of quantum mechanics (QQM) into the arena of physics,
every new revelation of the theory has also produced new challenges to
our classical intuition of the physical world. The pile of research works

invested in understanding each of these complex ideas- be it wave-particle duality,
entanglement, the meaning of state, the measurement problem, the interpretation
of QM, or the philosophy of QM, has only grown higher and reached deeper. Yet,
the subjects still elude a clear understanding (see Ref. [1]). All of these are in
the context of linear quantum mechanics. When we consider the case of nonlinear
extensions of QM, we find ourselves in a neverending, ever-expanding canyon of
articles, reports, journals, books, and blogs, which can easily overwhelm the noob
of this field. This vast, and expansive knowledgebase can also fog one’s field of
vision to the pre-existing literature so much so that some theories become obscured
by time despite being interesting and intriguing, while others become re-discovered
and so on. One such theory of nonlinear extension of quantum mechanics involved
seeking an attempt to merge mechanics and thermodynamics through setting
entropy as a fundamental theory of nature via introducing a stability postulate in
the framework of QM ([2-5]). Consequently the stage was set for merging mechanics
and thermodynamics which gave birth to the quantum thermodynamics formalism
[6-8]. This theory eventually was called the steepest entropy ascent (SEA) ansatz
[9]. Albeit radical in nature, some of the principle ideas of this formalism have been
overlooked by the larger physics community and the theory remained dormant for
quite some time. Eventually, a researcher from MIT re-discovered the results using
some similar fundamental tenets of the SEA [10, 11]. This publication became the
key moment that initiated a flurry of publication by the original author and began
a new generation of research in SEA [12-23]. All of these works culminated into

the confirmation that SEA can be called as the fourth law of thermodynamics [24].

The goal of this thesis is to study the effect of the fourth law of thermodynamics



Chapter 1 Introduction

on finite-dimensional single and composite quantum systems. Finite-dimensional
quantum systems lie at the heart of modern quantum applications, and the fourth
law of thermodynamics provides a fundamental basis for understanding decoherence
in those systems. Before we proceed with our agenda, it is necessary that we retrace
our path through the historical development of SEA. We can then discuss the
current state of the literature regarding the application of decoherence modeling
in the context of single and composite quantum systems. As SEA theory produces
a strongly nonlinear equation of motion for the system under observation, certain
physical and philosophical implications become difficult to look away from. We
provide a backdrop of such development. Finally, we discuss how this thesis is

structured.

1.1 A brief history of SEA

The history of SEA begins with the debate regarding the status of the second law
of thermodynamics as a fundamental law of nature. As opposed to the prominent
notion of the time, Margenau, Hatsopulous, Keenan, Park, Gyftoplulous and like-
minded physicists desired the second law to be as fundamental as the conservation
of energy, and not merely of statistical nature [25]. This claim was justified from a
historical perspective, and also from the perspective of various stability criteria,
and Gibbs’s principle of general inertia [25]. Later on, Park questioned the very
foundation of the von Neumann formalism in Ref. [26]. Here the character of the
mixed state is pondered upon and claimed that the concept of a mixed state does
not arise from a mixture of pure states, but rather has an interpretation of its own.
In follow-up work, Park went on to prove an earlier version of the no-go theorem
(arising from the linear structure of QM) [27]. Using these results, Hatsopulous

and Gyftopulous, in their series of publications, introduced the stability postulate



1.2 The second age of SEA

in the realm of quantum mechanics, gave a new interpretation to the entropy
functional, and introduced the concept of preparation contextuality through the
terms ‘unambiguous preparation’ [2-5]. Park also discussed how a quantal theory
compatible with thermodynamics will essentially be non-linear [28]. Based on these
works, in 1984, Beretta introduced a thermodynamically compatible nonlinear
equation of motion for a single constituent of matter [29]. In the subsequent
year, he provided exact analytical results for a qubit under certain constraints [7],
followed by providing a general equation of motion under similar dynamics for
a composite [30]. Following this, he showed that a nonlinear evolution governed
by entropy maximization is physically acceptable if we let go of the notion of
equilibrium based on the Lyapunov concept only, as it is not sufficient for the
existence of a globally stable equilibrium [31]. Beretta finally named this theory as

the steepest entropy ascent (SEA) formalism [9].

1.2 The second age of SEA

The initial phase of SEA development was suppressed by a sheer lack of enthusiasm
and discussion. In 2001, Gheorghiu-Svirchevski independently got the idea of
maximization of entropy production subject to certain constraints [10]. Soon after
he realized that his theory is a variation of the SEA ansatz [11]. However, this result
created a new splash in the otherwise calm pool of SEA research. Beretta reinitiated
the discourse with renewed vigor. He first showed how this formalism is compatible
with thermodynamics [12]. Then it was shown that the non-linear equation of
motion thus derived follows a set of necessary and sufficient conditions [13]. In
Ref. [15] Beretta further formalized SEA, polished some arguments, introduced
the ontological hypothesis, and explained the underlying geometric construction

with vivid details [15]. In the work published in Ref. [16], he further worked out

7



Chapter 1 Introduction

the detailed structure of SEA for composite systems and in essence completed the
formalism, suitable for application to modern problems of contemporary physics.
This flurry of publications did not go unnoticed this time, and von Spakovsky
picked up the mantle and started applying SEA to various scenarios. First, it was
shown how SEA leads to typicality and the agreement is not merely pedantic [19].
In the same year, Beretta showed that SEA has a structure similar to other non-
linear models of studying nonequilibrium thermodynamics and presented a uniform
notation to the problem [17]. This thesis will heavily rely on those standardized
notations. G. Li and Spakovsky studied SEA for chemically reactive systems and
performed atomistic modeling [18]. Then they studied heat and mass diffusion in
the far-from-equilibrium region using SEA [21]. In Ref. [32] they introduced the
concept of hypoequilibrium to define temperature for out-of-equilibrium systems,
and in this regard, studied the effect of SEA on the relaxation process of isolated
chemically reactive systems.

Meanwhile, Beretta has established the equivalence of the SEA formalism to
the GENERIC formalism of intrinsic quantum thermodynamics [33]. A note on
GENERIC. It is an abbreviation for the general equation for the non-equilibrium
reversible-irreversible coupling. In this scheme, the thermodynamic evolution of
quantum states is modeled through different levels of description [34, 35]. In this
formalism, macroscopic dynamics is favored over the microscopic structure of the
primitive level, thus setting the constraints as global invariants of motion. By
showing equivalence with this formalism, Beretta showed the diversity of SEA and
settled many doubts regarding its applicability. Cano-Andrade et. al., showed
how SEA can be used to study two-electron composites, alongside showing better
agreement with the experimental results regarding cavity-QED correlation studies
compared to existing phenomenological modeling [20]. Beretta continued pushing

the scope of SEA, and very recently showed that this theory can be called the
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fourth law of thermodynamics [24].

1.3 Decoherence study in quantum walks

The SEA approach is the first principled take on decoherence. However, the
paradigm of decoherence studies has been dominantly enriched by involving mas-
ter equations and phenomenologically modeling decoherence. In this approach,
Lindblad-type master equations are employed to study the relaxation of an out-
of-equilibrium system [15, 36]. As a modeling tool for studying such phenomena,
quantum walk (QW), which is the quantum analog of the classical random walk,
are used [37-39]. They can be mainly categorized into discrete-time quantum
walk (DTQW), and continuous-time quantum walk (CTQW) (see Refs. [40-42]
for review). The reasons for the use of QWs are versatile and widespread. They
present a universal model for computation [43], and are used for spatial search
algorithms [44]. QWs have also been applied to study and understand the nature
of entanglement in many-body systems [45-49]. In this thesis, we are interested in
modeling the dynamics of the single finite-level system.

Decoherence, being a fundamental aspect of reality, is studied in various contexts.
QWs being universal in nature provide some elementary yet insightful testbeds
for such studies. The first studies were done by Viv Kendon and group in Ref.
[50] where they showed that introducing little decoherence in QWs produces
faster spread and rapid mixing. Their results were for DTQWs. In Ref. [51]
decoherence was observed for QWs driven by many coins. For the CTQW mixing
and decoherence studies were performed by Fedichkin et. al., in Ref. [52]. Even
now there is active research in understanding decoherence and mixing in the case

of QWs via various phenomenological modeling [53-56].

Besides studying decoherence, thermodynamic studies on QWs are also active

9



Chapter 1 Introduction

areas of research. Consider the work of Romanelli and colleagues in Refs. [57,
58], where they have studied thermodynamic properties of QWs by varying the
contribution due to interference factor. This interference factor was introduced by
Romanelli et. al., in Ref. [59] where they split the QW evolution into two parts-
one consisting of a Markovian process, and the other being the above-mentioned
interference term which induces unitary evolution. Recently CTQW in the presence
of quadratic Hamiltonians has been studied [60], and the results somewhat agree
with SEA results. However, it appears that this formalism may attract some

unwanted non-physical effects should it be applied to composite walks.

1.4 The Bloch representation

To study finite-dimensional quantum systems, a proper representation seems to be
essential. The representation should be scalable, should help us exploit symmetries
in the system, and may not hinder access to the underlying structures embedded
in the description. The Bloch representation seems to be the just candidate in this
case. Most of the success of the representation lies in the two-level case, where
the available state space is a Reimann sphere in three dimensions [61, 62]. The
case of the general representation is not so straightforward either geometrically or
algebraically. In 1971, Park and Band introduced the multipole expansion concept
to the scheme of Bloch representation and showed a general formalism exists [63,
64]. Their formalism equated the Bloch representation to the angular momentum
representation and used properties of SU(NN) algebra, although this result was
way ahead of its time. After a long gap, as the demand of the times increased, a
set of works in this arena began to surface. Byrd and Khaneja used the concept
of coherence vector instead of Bloch vector to parametrize the density matrix,

and consequently described the characterization of positivity of such matrices
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[65]. In the same year, Kimura described the structure of N-level systems using
Bloch vectors and introduced some nice trace invariants in the foray [66]. A few
years down the line, Boya and Dixit discussed the geometry of the N—level Bloch
representation using Casimir invariants [67]. In the same year, Bertlmann et. al.,
re-introduced Bloch representation for qudits using generalized Gell-Mann matrices
[68]. A good review of the geometry and structure of general Bloch representation

was given by Briining [69].

1.5 A problem of signaling

In the year 1989, the late Prof. Weinberg enquired whether QM is truly linear, and
suggested some ideas for testing that non-linearity, if present [70, 71]. This was a
very radical proposition at the time and immediately garnered attention. In an
attempt to meet Weinberg’s criteria, Gisin [72] and Polchinski [73] showed that a
non-linear Hamiltonian formalism leads to supraluminal communication (signaling)
between two non-interacting subsystems of a composite, thus establishing something
known as an Einstein-Podolsky-Rosen (EPR) telephone [72]. This immediately
violates causality and allows the EPR channel to be used as a resource for faster-
than-light communication. Despite the negative result, many researchers devoted
a significant amount of resources to finding a non-linear formalism of QM that will
respect no-signaling. Gisin continued the search and established that non-linearity
introduced via the stochastic formalism involving Lindblad-type master equations
does respect no-signaling [36]. However, in this formalism, the mixed states can go
to pure states and vice versa, implying there is a non-unital underlying process
involved. Later, Ferrero et. al. showed, that the only type of non-linearity that
can be accommodated in the framework of no-signaling respecting irreversible

quantum theories is the one involving non-linear temporal evolution [74]. They
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also raised some pertinent philosophical questions by asking the validity of convex
linear maps in this regard, and how the processes that involve mixed state to
pure state evolution can coexist in a thermodynamically compatible framework.
Citing this, Spakovsky claimed that SEA is also no-signaling but did not provide
definitive proof [19]. Beretta had also considered the no-signaling problem but did
not conclusively give proof of it either [16, 20]. Very recently, Rembielinski and
Caban showed that the minimal non-linearity that can be no-signaling must be

convex quasilinear maps [75, 76].

1.6 Motivation for the thesis

The previous sections provided a gist of the backdrop upon which this thesis is being
to be presented. As we saw, since the development of SEA, despite having a rich
structure, disruptive physical intuition in its conception, and myriad applications,
SEA has not gained the kind of attention it is due. In our opinion, one principal
reason could be the apparent non-trivial and difficult-to-solve equation of motion
that SEA produces. Alongside this, the limited cases (one in this case) of exact
analytical results make this theory difficult to grasp. Numerical results exist for
different scenarios, but not having an analytical structure to it produces a sense of
ambiguity regarding what physical principles are at play. Motivated by this, we

present this thesis with the following objectives:

1. one must try to solve more cases that produce analytical or at least approxi-

mately analytical results.

2. That the solution thus presented should be scalable, so that overall dynamical

features can be easily identified, thus making the theory easier.

3. To present definitive proof that SEA is a truly non-linear extension of QM

12
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that does not signal.

As we can see, objectives 1 and 2 can be used to simplify some aspects of the SEA
without losing its essential non-linearity, thus opening up the scope for analytical
study and semi-analytical approximation in various cases involving finite-level
quantum systems. We aim to introduce an approximate method to solve various
finite-level systems. In the discussion of sec 1.3 we have seen how the QW case
can be used as a good model to study decoherence for N—level systems. We also
noticed a research gap that exists as there has not been any study of SEA on QWs.
Motivated by this, we desire to apply SEA on QW using our approximation tool to
fulfill objectives 1 and 2. Objective 3 aims to grant SEA the status of a valid non-
linear theory of QM that precludes signaling. This result will open philosophical
implications hitherto undiscussed. Furthermore, the apparent skepticism regarding
the validity of SEA in the physics community at large can also be addressed and

probably erased.

1.7 The outline of the thesis

This thesis is outlined as follows. In chapter 2, we explain the SEA formalism as
it appears in the literature. We elaborate on the underlying principle of stability,
rephrase the second law accordingly, and show how the entropy emerges as a
functinoal that can be used to characterize stability. Thereafter, we present the
variational approach via which the SEA equation of motion (EoM) is proposed by
Beretta. Hereafter will be denoted as Beretta SEA (BSEA) EoM. We discuss the
geometric structure upon which SEA motion is embedded and conclude with a
discussion on the system relaxation time.

In chapter 3, we present the Beretta-given exact solution for a two-level system.

Thence we introduce our approximate analytical formalism. We show how the
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intrinsic non-linearity of BSEA is reduced while retaining the basic features of the
evolution. We present the solution of qubit evolution using our approximate scheme
and comment on the nature of the same. Thus, we partially address objectives 1.
and 2.

The chapter 4, focuses on solving the CTQW problem using SEA formalism
using our approximation tool developed in the previous chapter. We discuss the
quality of the approximation benchmarked against the full numerical solution for
various analyses. By presenting this work, we complete objectives 1. and 2.

Objective 3. requires the development of some mathematical formalism in the
form of analytical roots of Bloch vector representation for N > 2 level systems. As
we saw in section 1.4, there is a need for such analytical results. This research gap
has been addressed in chapter 5. We present the general Bloch parametrization
and then show some analytical roots of density matrices under the same (for the
cases N = 3, and N =4).

In chapter 6, we use the results developed in chapter 5 to serve the following
purposes. We first present the Beretta composite SEA (BCSEA) EoM. As seen
in the historical developments of SEA in sections 1.1 and 1.2, there is a need for
analytically studying the SEA in the case of simple composites also. To serve this
purpose, we present our solution for separable and mixed composites. We present
our criteria for no-signaling and provide definitive proof of how SEA respects
no-signaling in those cases, thereby completing objective 3.

In the end, we summarize our findings, discuss the possible limitations, and
present possible future directions for research on SEA in the final concluding

chapter 7.
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2.1 Decoherence in phenomenological models

UANTUM mechanics (QM) is a linear theory. By linear we mean,
that linear operators act on a linear state-space (Hilbert space) and
evolve linearly in time. In such a theory, a closed system evolves via

unitary transformation, following the Schrodinger-von Neumann formalism. As a
consequence, incorporating non-reversible processes in the scheme of QM becomes
a non-trivial task. One can consider a system S as a part of some larger system,
M (see Fig. 2.1). Then the interaction with the environment (E) is considered,
which is M — S. In this formalism, although M evolves unitarily, the evolution of
the reduced subsystem S can become non-unitary. The correlations that build up
between S and E are destroyed during the coarse-graining process (while partially
tracing out, i.e., averaging over one of the subsystems). At the heart of this
formalism lies the phenomenological reasoning of decoherence: that the destruction
of entanglement happens as soon as correlations are created, thus averaging over
a long time does not contain any information about the initial states. However,
another approach would be to consider decoherence to be a fundamental process in
competition with the building up of correlation due to the Hamiltonian evolution.
Such a mechanism would consider the second law of thermodynamics to be of
a fundamental status, not just a statistical theory. The steepest entropy ascent
(SEA) formalism finds its roots in this fundamental approach to decoherence. Here
in this chapter, we first discuss the phenomenological modeling of decoherence to
highlight the basic structure of the theory and look at its drawbacks. Then we
take a look at the review of the literature on SEA so that we have a grasp of what

the theory entails as we move on to the rest of the thesis.
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Energy
OO O 0 o
E Exchange

S

Figure 2.1 A subsystem S interacting with its environment E. M = E 4+ S evolves
unitarily. The weak coupling between S and E builds up entanglement between the

subsystems.

2.1 Decoherence in phenomenological models

We begin with the idea that a system is never truly isolated, but is in interaction
with some environment, which leads to the evolution of pure states to mixed states.
Density matrix (p) is used in this regard. We identify pure states via the condition
p? = p, and mixed states satisfy p? # p. The system S, and the environment E
undergo a joint unitary evolution (see the schematic diagram Fig. 2.1). During
this evolution, entanglement builds up between S and E. So the necessary question
arises, how do we not observe so? How is it that the reduced density matrices
are effectively decorrelated? The answer lies in the key assumption made in this
modeling. The so-called Markovian assumption [15], ensures that the correlations

smear out as fast as they are built. The whole process can be summed up as given
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e S and E undergo joint unitary evolution.

o We can assume a weak coupling between S and E resulting in the building

of entanglement between the two.
o Markovian condition- the correlations die out as soon as they are formed.
o The resulting time-averaged dynamics remain uncorrelated.

One standard justification for using the Markovian assumption lies in the fact that,
if we consider a coarse-graining (time averaging) process over a sufficiently large time
interval, yet small enough compared to that of the system as a whole, the average
correlation is usually negligible. However, this approximation is at odds with the
underlying unitary dynamics of quantum mechanics, and thus presents itself as an
ad hoc addition to the theory of open quantum systems. The reduced probability
distribution follows the Kossakowski-Sudarshan-Gorini-Lindblad (KSGL) form of
master equation used to understand stochastic as well as open quantum systems

[36], and is given as follows-

dp i 1
= 5 (2 = {ViV,e}). (2.1)
J
The summands in the r.h.s are traceless. An alternative way of writing the Eq. (2.1)
is as follows
3=l s (Vo] + Ve i) (22)
J
These operators V;’s are either creation-annihilation operators or transition opera-
tors, effectively allowing mixing from pure states, and Plank constant (k). It is to
be noted, KSGL provides a nonunitary, linear, completely positive map. Despite

being applied in many studies involving decoherence, the KSGL formalism has

some of the following drawbacks [10, 11, 15, 16, 19, 22, 24, 77].
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1. The Markovian assumption, also known as the ‘erasure of correlations’ lies at
the heart of KSGL formalism. This assumption finds itself in contradiction
with the underlying unitary quantum dynamics given that no modification

of the existing QM formalism is being considered.

2. The Markovian assumption is also responsible for the generation of entropy
in this formalism, which makes sense if we assume the second law of thermo-
dynamics to be of statistical nature. The debate on the nature of the second
law not yet being settled [2-5], it does not seem prudent to rely on such ad

hoc origin of entropy production only.

3. As quoted in [15], that a ‘loss of information on the time scale of the observer
leading to a rapid decoherence from the entanglement which continuously
builds up by (at least) weak coupling with environmental degrees of freedom,’
cannot properly explain diffusion through the transport of various physical

properties such as mass, momentum, energy to name a few.

4. This formalism being phenomenological in origin is mainly supported by
empirical results. However, if a fundamental theory can explain the experi-

mental results with better precision, the new theory should be preferable to

KSGL.

5. Due to interaction with the environment, zero eigenvalued states of p evolve
to states with non-zero eigenvalues, which leads to mixing. This presents
itself in a position of problem, as we know due to unitary evolution in QM
pure states evolve to pure states. Also, in many situations, physicists restrain
themselves to the effective subspace of the density matrix in the context of
large systems to study some evolution, and KSGL formalism presents itself

as a challenge in those cases as well.
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6. The positivity of the p is ensured in forward time but is not guaranteed in
the time-reversed scenario. Consequently, the dynamical semigroup nature
of evolution can be a matter of concern to physicists who expect a theory
consistent with thermodynamics and mechanics to display strong causal
behavior. By this, we mean that if there exists a bijective map between the

initial and final states, we have established strong causality.

Considering these, we are motivated to consult a theory that attempts to
address some of the drawbacks of the KSGL formalism while involving a more

fundamental approach to decoherence.

2.2 The entropy functional

The stability principle [25], the fourth postulate of QM as introduced in [2], and
many other postulates regarding stability and equilibrium are derived from the
concept of entropy. But the direct use of von Neumann form or similar forms
of the definition of entropy may lead to foundational errors among other things.
The definition of state and its philosophical interpretation not being on the same
footing creates most of the issues [26]. Hence, it is prudent to arrive at a definition
of entropy that encapsulates the concept of stability as well as satisfies the desired
properties of a state functional to be used in the SEA formalism. Consider the

following statement [2],

Theorem 2.2.1. Consider a separable system in a state p. There exists a property
I, such that it is invariant during all unitary processes, additive for independent
systems, given by the expectation value of the measurement results, and does not

explicitly depend on the number of particles of the constituent species. For a fized
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constant c, this property is given by

I =ctr(pln(p)).

Proof. This proof is taken from Ref. [2], here it is reproduced for the sake of
continuity.

Consider a finite-dimensional () separable system A with density matrix p having
a complete set of eigenvalues and eigenvectors {\;}, and {v;}, respectively. For
unitary processes, employing the Schréodinger-von Neumann evolution, besides the
number of particles, eigenvalues remain invariant during unitary time evolution.
Consequently, any property that is invariant during unitary evolution should be
dependent on the {\;} only. Since by theorem, I must also be an expectation
value, it is given by

I= zk:)\kpk ({A})- (2.3)

Where, pr ({\i}) = (vg|P|vk), for some property P(A). A unitary process Uio
between two states A, and A, of the separable system A involves a cyclic change
in parameters. Consequently, the eigenvalues {\;} remain unchanged but the
associated eigenvectors {v;} undergo a permutation with respect to the fixed
ordering of the eigenvalues or vice versa. Considering this invariance property
of the eigenvalue-eigenvector combination, the quantity I becomes a symmetric

function of {\;} of the form,

I=3 M ({Nh) =22 F (M) (2.4)
P

k

Where, f(A) is a function of A only. Now, let us consider two independent systems

A and B with associated states A; and B; respectively. The corresponding
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eigenvalues of the density operators of A and B are {\;} (k=1---M) and {u}

(¢ =1---N) respectively. To satisfy the condition of additivity set in the theorem

for I, we can write

Iag = > f (Nepe) = D F) + D flie). (2.5)

k0 k I

Consider for some fixed m and n we have, \,,, u, = 1, and A\, uy = 0 for k #

m, ¢ # n. Then Eq. (2.5) implies the following,

—f(1) + (M x N — M — N +1) f(0) = 0. (2.6)

Since system sizes are independent of each other, we have f(1) =0, and f(0) = 0.

Let us now focus on the variation of f with respect to variations in eigenvalues.

Keeping all A, pu fixed except for A, and A\, so that the following is satisfied,

A + ANy = 0, (2.7)
Using this we get from Eq. (2.5)
dfAmpe) — df(Am) dfAape) — df(Mn)
2 dmpe) z,;’” Avte)  dh, (2:8)

¢
Suggesting, given the choice of m,n is arbitrary, each side of Eq. (2.8) must be

dependent on p, only. Hence, differentiation w.r.t. A, gives,

S Oite) P Om)
2 O g, 29)
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Now keeping all p fixed except for p, and p, (for arbitrary r and s) so that,

we arrive from Eq. (2.9),

PfAmptr) 5y Ef(Anptr) A f (Ampss) d®f (Ampss)
. mrHT )\m mrHT :2 s mir's 2>\m mrH's 2‘11
G IO R To W7 R ) W7R AT WTR
This can be re-written as,
df(z) & f(z)
2z 12 +x i (2.12)

for some fixed constant ¢. The solution to Eq. (2.12) along with the conditions of

f(0), f(1) =0 gives,

f(z) = cxln(x). (2.13)
Thus, we have,
I=Y fw) =c> AIn(N) = ctr(plnp). (2.14)
k k
[

Through Th. (2.2.1), we found I to be a functional which remains invariant
during a unitary process and holds additive property when it comes to a separable
composition of systems. However, we have not yet discussed the case of nonunital

irreversible evolution. To do this, consider the following theorem [3],

Theorem 2.2.2. A property S exists for every system in any state that is invariant
in any reversible adiabatic process, increases in any irreversible adiabatic process,

and is additive for independent separable systems.
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Proof. Following Ref. [3], we present the proof here.

Before we proceed, a definition is in order

Definition 2.2.1. The work done in any reversible adiabatic process for a system A
in contact with a reservoir R, where A starts from some state A; and ends in the
mutual equilibrium state Ay with R, is the maximum amount of work that can be

extracted through such interaction, and is called available energy of the system

AR.

Hamiltonian operators (H) for a separable system are expressed as a direct
sum implying energy (E = tr(pH)) is additive, so is true for the available energy
(E?) just defined above. Moreover, the density matrix for such a combination can
be expressed in terms of products. Let’s denote finite changes in any property of a
system by A. Given all these, it follows that to define an additive property such

as 9, we can use the following relation,

AS = ¢,A(E — E%). (2.15)

Where ¢, is a constant to be fixed later. As we can see, because E and E® are
expectation values, following Eq. (2.15), S is also an expectation value. It can be
shown for an adiabatic reversible process (U;2) between two states of the system

A; and Ay, AjpE = AjpE® [3]. Hence, for such U;o we have,

(A128),., = 0. (2.16)

rev

Whereas for nonreversible adiabatic changes, the work done is equal to the change

in energy, i.e., —AsE, but is less than —A,E?, so for such a system,

(ARS),, > 0. (2.17)
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As we can see, although Th. (2.2.2) establishes S as a property that is additive
for a separable system, and is increasing for an irreversible sense, it does not
guarantee that S has any relation to I, but for the fact that the former seems to
be a generalization of the latter. To establish the form of S, let us consider the

contradictory proposition, that

AS # csAtr(plnp). (2.18)

This assumption does not hold by Th. (2.2.1) for unital evolutions, as either AS is
no more invariant, or it loses the additive property for independent systems or both.
However, as seen in Eq. (2.16), AS for such processes is zero, thus contradicts our
assumption in Eq. (2.18). To establish reason further, let’s note that the processes
used in the definition of AS do not change the degrees of freedom of the system,
and S is an additive property. Therefore, it can be at most a sum of ¢, tr(pIn p)
and some linear form containing the particle number of the constituent species.
Let us venture into finding the coefficients for such terms. Consider the case where
there exists no reversible process which connects any two states of the system with
a different number of degrees of freedom. This allows us to choose for ourselves
whatever value of the coefficient we like, including zero. On the other hand, if
such a connection does exist, we would have to determine each such coefficient
experimentally [3], and this is where the third law of thermodynamics plays a key
role. By this law, each of these coefficients becomes zero. Hence, we are compelled

to conclude that S must be of the form of I, i.e.,

S = —kptr(plnp), (2.19)
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where ¢ is Boltzmann constant (kg) and is determined from experiments on simple
gaseous systems passing through stable equilibrium states [4].

So far, we have established that S is a property of the system that behaves
like entropy, and looks like entropy, hence we can call it the entropy functional.
However, this description is more general and considers reversible and irreversible
processes as originally thought upon by Clausius. This representation also allows

us to formulate the following statement on stable equilibrium [4],

Definition 2.2.2. The state Ay will be in stable equilibrium if and only if for any
other state A; of the system, the corresponding entropy S; is less than that of A

(Sp) for same values of the state parameters, energy, and the number of particles.

In what follows, we will look into the concept of stability in more detail and will
try to rephrase the second law of thermodynamics from thereon. This rephrasing
is key in the SEA scheme of things, as we can then incorporate the second law of

thermodynamics in the quantum paradigm and get going to the interesting stuff.

2.3 Stability and the second law of thermodynamics

Stability has a position of utmost importance in thermodynamics. The laws of
thermodynamics mostly describe systems that have achieved a ‘steady state’, i.e.,
are in a stable equilibrium. However, this definition of equilibrium is mostly
statistical and thus cannot be directly implemented for systems with fewer degrees
of freedom. Hence, we must re-evaluate our understanding of equilibrium that
suits the task at hand.

Consider the trajectories generated by a given dynamics of the form u(t, p) con-
taining the state p at time t = 0. A state p. is in equilibrium when u(t, p.) = pe

dp

for all ¢, or in other words P = 0. We use a metric to define distance function

d(x,y) in the state space as follows
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1. d(z,y) = 0 only when z =y,

2. d(z,y) > 0 for all z, y,

3. d(z,z) +d(z,y) > d(z,y) for any triplet z,y, z (triangle inequality),

4. d(z,y) = d(y, ).

Let us begin with the second law of thermodynamics, the following statement is
inspired by Hatsopoulos-Keenan statement [25], and the Kelvin-Planck, Clausius,

and Carathéodory statements follow from this [78].

The second law of thermodynamics: There exists a unique globally
stable equilibrium state among all the states of a system for a given
value of the energy, number of constituents, and the parameters of the

Hamiltonian.

It is well understood that thermodynamic equilibrium is the Lyapunov locally
stable equilibrium. We begin with Lyapunov equilibrium [13, 15, 31, 79]. The

Lyapunov local stability condition is given as follows-

Definition 2.3.1. Consider an equilibrium state, p.. It is locally stable if and
only if for every ¢ > 0 we can find a §(e) > 0 such that d(p, p.) < d(€) implies

d(u(t,p), pe) < € for all t > 0 and p.

To expound on the above, any trajectory that passes through p which is at a
distance d(¢) from the equilibrium state p., cannot go beyond the distance € for

any time ¢t. A nice way of visualizing this is presented in Fig. 2.2.
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u(t, p)

Locally stable equilibrium Unstable equilibrium

Globally stable equilibrium

Figure 2.2 A schematic description of different types of equilibrium as discussed in the
text. The trajectories in purple, red, and green denote various trajectories traced by
u(t, p) in the state space. Each orbit is denoted by its distance from the equilibrium state
pe- In the metastable equilibrium case, we can see how originating from two different
distances from the equilibrium state p., two trajectories can end up in two different
modes of equilibrium. The red one remains locally stable, while the green one becomes

metastable.

Any state that does not follow Def. (2.3.1) is a locally unstable state. It is
claimed in some literature, that the entropy functional as described in the previous
section is a Lyapunov function [79]. However, that seems not to be the case, partly

because Lyapunov stability excludes metastable states. The other reason is, while
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maximal entropic states are also locally stable, the converse is not always true
[31]. Consider the case of the unitary evolution of pure states, u(t,p) = Z/ItpL{J
with U; = exp(—iHt) for h = 1. The value of entropy functional is zero, while
these states satisfy the local stability criteria as set by the definition above, they
are not unique. The function d(py, p2) = tr|p; — pa| will give same distance for
all states p at all times ¢ from the equilibrium state p.| [H,p.] = 0 implying
d(u(t, p), pe) = d(u(0, p), p) [31]. One thus needs to assure that other equilibrium
states which might be metastable or limit cycles are not globally stable also. The
chief reason behind such a requirement is the second law of thermodynamics. There
is also the apparent conflict between mechanics and thermodynamics which needs
addressing. The basic statement of a stable equilibrium from the point of view of

mechanics based on the minimum energy principle is [15]

Among all the states of a system consistent with a given set of values
for the numbers of constituents and the parameters of the Hamiltonian,

the state of lowest energy is the only stable equilibrium state.

As we can see, while the second law asks for entropy maximization, mechanics
asks for energy minimization. This paradoxical situation can be resolved once we
consider the pure states to be a subset of all states available to a quantum system.
That is states which satisfy the criteria p? = p form what is known as limit cycles,
which while being locally stable are not maximal entropic states. Hence they
satisfy Lyapunov criteria while not being a global equilibrium state. However, by
admitting states of the form p? # p one opens up the possibility of accommodating
maximal entropic states, which coincide with the thermodynamic equilibrium state
as well. The Lyapunov definition no longer remains necessary and sufficient for
thermodynamic equilibrium by the second law, it only remains necessary. The

Lyapunov criteria falling short of accommodating these states must be augmented
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with the definition of global stability and metastability. Which are given as follows
[79]

Definition 2.3.2. An equilibrium state p. is metastable if and only if it is locally
stable but there is an n > 0 and an ¢ > 0 such that for every § > 0 there is
a trajectory u(t, p) passing at ¢ = 0 between distance n and 7 + § from p,., and

reaching at later time ¢ > 0 some distance further than 7 + €.

To elaborate, consider a state p at t = 0, is at distance between 1 and 7 + 9,
implying n < d(u(0, p), pe) < n+9. If after some time, it is found that the trajectory
lies outside the range n + ¢, that is d(u(t, p), p.) > n + €, the state has started
veering off from its locally stable trajectory as in Fig. 2.2. This means, while the
states which are already within the distance d, to begin with, are in the distance e
for all times (locally stable), metastable implies, states that slightly depart from
that distance steer away from the stable orbit. This allows us to define global

stability in the following way,

Definition 2.3.3. An equilibrium state p,. is globally stable if for every n > 0 and
€ > 0 there exists a d(7, €) > 0 such that every trajectory u(t, p) that starts within

the distance  and n + ¢ from p,, stays within 1 + € distance from it at all times.

One can see how this connects to the standard definition of global stability, an
equilibrium state is stable if it can be altered into another state by interactions that
leave net effects on the environment.

As we can see from the above discussion, the entropy functional, along with the
entropy non-decrease property, provides a reliable way to reach global equilibrium
states via the second law of thermodynamics. We must ask ourselves at this point,
what do we mean by states in the context of quantum mechanics? Where do the

above-mentioned trajectories find their application? Are these states described
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as the usual states of quantum mechanical formulation? Or do they come with

philosophical implications of their own? Let us find that out in the next section.

2.4 Ontology of states

The search for the true philosophical meaning of a quantum mechanical state is an
age-old problem and has an affinity to drag the questioner into a rabbit hole. This
thesis will try not to indulge in those difficult problems. Yet, given the nature of
the issue under consideration, some mention of the philosophical implications of
the assumptions considered in the SEA formalism must be given, lest we are to
ignore all the nuances of the formalism.

It is to be understood, that the approach to non-equilibrium as envisioned in the
SEA formalism is towards a fundamental nature of decoherence in contrast to
the coarse-grained nature of the same as discussed in Sec 2.1. Hence it is also
important to observe that the states discussed in the context of SEA are not
outcomes of measurement statistics of an ergodic system performed over a long
period of time [2]. One must also acknowledge the fact that it is not possible
in quantum mechanics to predict which eigenvalue a single measurement will
yield. Hence, it may be concluded that the outcomes of some or all measurements
performed on a given system are going to be irreducibly dispersed. That is why
we deal with averages when talking about the value of a property of a quantum
system. This implies that there is an epistemic rule of correspondence [5, 26],
by which physical conditions of a state are experimentally known only through
repeated measurements performed on replicas of the same prepared in a particular
way. This suggests that the preparation procedure of a state needs to be specified
and uniquely associated with it before studying any quantal evolution of the same.

This requirement is peculiar to quantum mechanics [5].
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A density matrix p is used to express the probability distribution associated with
measurement corresponding to a given preparation. A density matrix thus produced
can be pure p? = p, or mixed p? # p. While there is no ambiguity regarding the
ontological status of the pure states, it is the mixed states that are mostly in a
pickle. The dominant narrative is that mixed states are a convex combination of
pure states and the weighted sum implies epistemic ignorance. However, this idea
is contested by Park, Hatsopoulos, Beretta and colleagues [5, 15, 25, 26]. In their
point of view, if a preparation results in a mixed state, then the mixed density
matrix is the true representation of the state. Park also argued [26] that a p can be
numerically subdivided into infinite many combinations of pure and mixed states,
thus one can represent our ‘ignorance’ in so many ways. All of these combinations

will have the following format (each py can be mixed or pure),
for0 <w,p <1, p= Zwkpk, with Zwk = 1. (2.20)
k k

Such a statement begs another set of questions, can we set up a procedure through
which we can operationally distinguish between preparations (Z;) that are due to
epistemic ignorance and result in a ‘mixture’ of pure states and preparations (Z,)
that are genuinely mixed? Hatsopoulos et. al. [5] answer this in positive. They
provide one of the first hints of contextual and non-contextual preparations [5].
Instead of delving into the details, we can with certain confidence conclude that
the preparations of the former type, Z; can be treated with information-theoretic
tools, while the latter type requires a more fundamental approach.

This is where the ontological status of the state in the context of SEA gets cemented.
We present the following hypothesis [15, 77] which together with the second law of
thermodynamics as stated in Sec. 2.3 sets the ground for the inclusion of a fourth

postulate in the scheme of quantum evolution as will be discussed later in this
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chapter.

Ontological state hypothesis: A density matrix can be used to rep-
resent the evolution of a single particle. Moreover, both pure and mixed
state density matrices are real ontological objects. Mixed state density
matrices are not merely a result of epistemic ignorance represented

through a mixture of pure states.

Before concluding this section, we must acknowledge in the vein of Ref. [19]
that there is more than one way of preparing a mixed density operator. Each
of those preparations bears a physically different meaning. However, if no local
measurement can distinguish between those preparations, it can be safely said
that irrespective of their origin, operationally those density matrices are physically

equivalent.

2.5 The four postulates

Now that we have discussed the second law of thermodynamics, the role of the
entropy functional in identifying the globally stable state, and the meaning of those
states, it is about time that we bring all of these together in a coherent fashion.
The introduction of the second law in the context of QM takes place through the
equilibrium state postulate that we will discuss below. Before, we proceed, for the
sake of continuity we will revisit the postulates of the Schrodinger-von Neumann

theory of unitary dynamics as well.

I. The correspondence postulate

Observables are represented by some linear Hermitian operators defined on a Hilbert
space where the quantum mechanical states reside. Some of these operators represent

physical observables.
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A note on the wording. Some operators are not necessarily Hermitian (PT symmetry
case with non-Hermitian operators [80]). While most of the operators are physical

observables, not all physical observables are operators, for example, temperature

2].

II. The mean-value postulate

We can associate a real linear functional (P) of the Hermitian operators P, such
that for every ensemble of measurements performed on unambiguously prepared
copies of a system, (P) is the average of P operations.

It can be shown [2-5] that using the above two postulates, p, the density matrix
can be used as a representation of state with unit trace and positive semidefinite

structure.

III. The dynamical postulate

For a reversible process the time evolution of the density operator is given by the
Schrédinger-von Neumann equation of motion as given below

dp i

== —2[H,g]. (2.21)

Where 7 is the reduced Planck’s constant, and H is the Hamiltonian operator.

IV. The stable equilibrium postulate

Any independent separable system has a unique stable equilibrium state which is
fixed by a given value of energy, number of constituents, and other parameters of
the Hamiltonian.

The second law is included in the QM picture via this postulate. As we can see,

the existence of an accessible globally stable equilibrium state means that now
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we can theorize and formulate how quantum states will evolve towards that state.
This will be the main focus of the steepest entropy ascent ansatz, which will be

discussed in the next section.

2.6 Steepest entropy ascent

We begin by stating the steepest entropy ascent (SEA) ansatz, which is based on
the ontological state hypothesis, the second law of thermodynamics presented as

the fourth postulate and is given below [81]-

Steepest entropy ascent ansatz: for a given system (closed or open),
there exists a globally unique stable equilibrium state p. (from the
second law). Any other state evolves towards p, under given constraints
of motion such that the local entropy production rate is maximum,
and it does so in the direction of the gradient of the entropy functional

(steepest ascent).

In what follows, we will see how the SEA ansatz gives rise to a new equation
of motion which in some sense is a generalized version of the KSGL equation
discussed above in Eq. (2.1). In the following section, we will discuss the geometric
interpretation of the SEA equation of motion (EoM).

To find the SEA EoM we begin with the state operator p, we follow Refs. [17, 81].
To maintain the positivity of p at all times, we consider v = ,/p to construct the
EoM. Later we will see that the final EoM includes only p. This 7 is an element of
the linear manifold .Z, a state space of the Hilbert space 7. One can define a
symmetric inner product of the linear operators (not necessarily Hermitian) defined

by (A | B) = tr(ATB + B'A) /2. We have,

p =" (2.22)



2.6 Steepest entropy ascent

Consider the generators of motion by elements of the set { C;(7)}. Each of these
C; represents various generators, for example, Hamiltonian (H), probability (1),
number operators (N), and so on. We use the entropy functional (S) as defined

in Sec. 2.2. The functional derivative of C;, S with respect to the change in 7 is

denoted by
v, 5%(7)
~
. 58 (2.23)
= 5

To formulate the steepest entropy path, we need to set the constraints of the motion.

They are entropy non-decrease, energy conservation, probability conservation, etc.

dy

5> we can use the following equation to express the constraints

Denoting IL, =

d
EIHS with HS:(CI)|H,Y)ZO
dt (2.24)

dd? —Tlg,  with g = (¥, | I1,) = 0.

The evolution of v in time (%) has two principal components, one due to the pure
unitary Hamiltonian evolution (yg), and the other is due to dissipative motion

(4p) that can be written as [15],
4 =Yg + p. (2.25)
The pure unitary Hamiltonian evolution follows Schrédinger equation of motion
i

i = —3 H. (2.26)

To figure out the dissipative part, we need SEA formalism. As we have seen so far,

constraints play an important role in determining the trajectory of SEA motion.
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However, one needs to associate a metric to the manifold .Z so that the distance
function can be determined. Besides, a metric will allow us to fix the norm of the
4 so that we can focus only on variation in direction. Let us consider the metric

given as G(7), this allows us to write a small line segment in the state space as

di = /(L | G(v) | IL,). (2.27)

Hence, using the norm constraint, and the constraints of Eq. (2.24), we can in-
voke Lagrange’s multiplier method to write down the following Lagrangian type

functional

T =105 - 3 Aillg, - 5 (IL, | G(3) | IL,). (2.28)

We have used 3; and 7 as Lagrange’s multipliers independent of I1,. Now we will
use the calculus of variation to minimize the Lagrangian T about the variations
with respect to I, by taking functional derivative as under (to distinguish from
QM states, instead of the Dirac ket, we use the |-) for SEA states and functions on
states)

0T =
3L, @) — Zﬁ Vi) = 7GIL,) . (2.29)

Using the criteria, 61 /611, = 0, we get the following equation for IL, = 4p,

) = icl <q> > 5‘@) | (2.30)

Next, we assume a metric of the form G(A) = ££71A where L is a positive definite

T

hermitian operator, and clearly G~}(A) = 7LA and G=*(A)" = 7ATL. Let us look
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at the expressions for |®) and |¥;) [15, 17, 81]

Vi) = [2Civ) 231)

(@) = |~2ks (Inyy"+1)7).

Now looking at the dissipative part of the motion, we get the following relation

from Eq. (2.22), and (2.25),

dpp
e ILAT + 1L, (2.32)

Now if we insert the expressions from Eq. (2.31) into Eq. (2.30), we get,

IL, = -2CL (kB(ln 4+ Iy + Z B ny) . (2.33)

Using this along with Eq. (2.32), we get

d —
% =—2 lkBE(ln(w*))w* + 2 BiL(C)rY" + kp Ly

(2.34)
+hsy L + sy In(y91) £+ 3 By OZ-E] :

Identifying vy = p, we can rearrange the r.h.s of the Eq. (2.34) to get the following

one,

drp

50— <2 i {Llnlo)). ) + kn{Cp} + X BAEC + 9GE)|. (239)

We now will determine [3;, which will allow us to express Eq.(2.35) in a more
aesthetic manner. Using the constraints of Eq. (2.24), with Eq. (2.30) the following
equation is found,

ST(WL]W) By = (9| L|D). (2.36)

)
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t

Let us consider three generators of motion giving rise to three constraints, and

correspondingly three Bs. The Eq. (2.36) thus can be solved using Cramer’s method,

the solution is given below,

(W [ L] 0)

2l
I

(W [ L] 0)
(W [ L] 0y)

which must be non-zero for the solution to exist. Then we can have,

(Wy [ L] ®)
(Vo | L] ®)

2l —

(W3 [ L] @)

(Wy [ L] W)
(Wo [ L] 0y)
(Vs | L] W)

(Wy [ £]0)
(Wo [ £ ]0)
(W3 [ L] 0)

On column rearrangement, we get:

(V| L] D)
(W2 | L] D)

(V3| L] @)

(W [ £ ]0s)
(W [ L] 05)
(W3 [ L] W)

(W [ £ ]0s)
(Wa [ L] Wy)
(W3 [ L] W)

([ L] D)
(W2 | L] D)
(U5 | L] D)

(W1 [ L] W)
(Vo [ L] W)
(W3 [ L] Wy)

(Wy [ L] W)
(Wo [ £]0y)
(Vs | L] W)

42

(V| L] ¥3)
(W2 | £ | s)

(W | £ [ W3)

(W [ £ ] 0s)
(Wa [ L] W3)

(W | £ [ W3)

(V| L] ¥3)
(W2 | £ U3)
(V3| L] V3)

(W1 | L] D)
(Vo | L] @)
(W3 | L | D)

(W [ £]Ws)
(U2 | £]V3)

(W3 [ L] W3)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)
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and,
(U [ L]@) (Ur[L]T1) (U1 ]L]Ty)

Ps==|(Ua | L] D) (Ua| L] W) (Uy| L]y (2.42)

2l —

(Vs [ L] @) (W3 [L]|T1) (V5] L[Wy)

We can assume £ = ﬁ[ , I for Fisher-Rao metric[81], kg to handle scaling of the
entropy term, and 4 as a constant scaling factor. To find a more explicit solution

let us note the following

(w1 2]®) = -~ (o3 Cutaie)}) + 1r(5(Cun )

(2.43)
(01 £10) = 1~ tr(p3{C G} ).
Using this expression in Eqgs. (2.37), (2.38), (2.41), and in (2.42) we get,
1 te(8{Cr. 1Y) tr(8{Cr. Go}) w(8{Cr. G})
Q= ) w(5{Co, C1}) tr(8{Co, Co}) tr(8{Ch, C5})| (2.44)
w(5{Cs, C1}) tr(5{Cs, Co}) tr(8{C5, Cs})
(5{Ci,In(p) + I}) tr(4{Cr, Cu}) tr(4{Ch, Cs})
B, = 1 e P p
p1 = _k%TSQ tr(i{Cg,ln(p) + ]}) tr(i{Cg, Cg}) tr(i{Cg, Cg}) , (2.45)
tr(8{Coln(p) + 1}) tr(8{Cs, Co}) tr({Cs, Ci})
tr(g{Cl,ln(,o) - [}> tr(%{ch 01}) tr(%{Cl, 03})
3 1 P p p
52 = ]{I%T?’Q tr(i{CQ,ln(p)—l—]}) tr(5{02,01}> tr(i{CQ,Cg}) ) (246)
tr(8{Cs,In(p) + 1}) tr(4{Cs, C1}) tr(5{Cs, Cs})
1 tr(8{C,In(p) + I}) tr(4{C1, C1}) tx(8{Cy, Co})
Bs Ry tr(4{Couln(p) +1}) tr(8{Co, C1}) tx(4{Co. Cu})|-  (247)
tr( {C5,In(p) +I}) tr( {Cs, C1} ) tr( {C5, Gy} )

43



Chapter 2 Steepest

Entropy Ascent

One can do elementary operations on the columns of the determinants in Egs. (2.45)

(2.47), and then consider the scaling Q = G

for 5

- kB/827

1
k2730

Py =

—kg3s.

We use the scaled

dpp

tr

tr

tr

1

w(4{C,n(p)}) w(4{C G}) w(8{Ch, Cs))
tr(g{C’g,ln(p)}) tr(g{Cg, C'g}) tr(g{CQ, 03})
tr(2{Cs.In(p)}) tr(8{Cs Go}) (4G, G})

(81Cum(e)}) (3G 1Y) (4G, G}
(s{Cam(}) w(5(Co 1Y) t(5(Co Gi})
(5{Csn(p)}) tr(5{Cs C1}) tr(5{Ch, Cs})

w(8{Cn(p)}) w(4{Cn 1Y) w(8{Cr, Cu})
tr(4{Coln(p)}) tr(4{Co, C1}) tr(8{Ca, 2})

tr(8{Cn(p)}) tr(8{Cs C1}) tr(5{Cy o))

to write Eq. (2.35) in the following way,

T —i [pln(p) + ;Z(_l)iﬁi{ciap}] :

Q) to get the following expressions

(2.48)

(2.49)

(2.50)

(2.51)

Using Lagrange’s multiplier (5;) thus expressed in Egs. (2.48) (2.50), along with
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in Eq. (2.51), and little algebra, we get the following compact form (h, kg = 1).

dp
dt

+i[H, p| =
Bpln(p) s1C1 0} 3G} 3G}
tr(%{Ol,Bln(p)}> tr(pCY) t1"<§{01702}) tr(g{01,03})
tr(5{Co. Bln(p)}) r(5{Co 1)) w(0GF)  u(3{C1. Gu})
tr(§{Cs Bln(p)}) tr(§{Cs. Gi}) w(§{Cs Ga}) 1o C3)
tr(8{C1, C1}) tr(8{Ch, o}) tr(4{Cn, Cs})
(8{Co, C1}) tr(8{Co, Co}) tr(8{Ca, C5})
w(5{Cs, C1}) tr(5{Cs, Co}) tr(8{Cs, Cs})

(2.52)

\‘

Where we have used the Eq. (2.21) to write the Hamiltonian evolution part. This
equation was first introduced by Beretta in Ref. [29]. Hence, we will call it Beretta
SEA EoM (BSEA). On the other hand, by not explicitly expressing s and using
Eq. (2.52), we write the BSEA evolution equation of motion in the nice form as

under,

dp 1

1 = "1H. Pl = = |Boln(p Z 1)'6:{ G, p} (2.53)
If we compare Eq. (2.1) and (2.53), we can see the latter does not contain terms of
the form V;-Tij, which populates zero eigenvalued states. And instead, the BSEA
equation contains terms involving In(p) which considers the contribution due to the
entropy non-decrease principle. To restrict the evolution to non-zero eigenvalued
subspace of p, an operator B is introduced which is diagonal in the eigenbasis of p
and is constructed by substituting each non-zero eigenvalues of p by one. Thus,

one avoids a major issue (preservation of rank space of p) with KSGL formalism

while maintaining a nonlinear evolution of p. A very convenient way of writing the
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above equation is through the introduction of the following operator

T

D= 21 (Bln(p) + Z(—l)iﬁi c;) : (2.54)

B is a diagonal operator formed by substituting the nonzero eigenvalues of p with
ones. We get

((iii = —i[H, p] — {D, p}. (2.55)

Thus endeth our derivation of the SEA EoM. In what follows, we will discuss the

geometric interpretation of the above formalism.

2.7 A Geometric construction

An attempt at deriving a nonlinear version of Schrodinger equation which ap-
proximates the Lindbladian evolution equation was taken up by Gisin et. al. on
geometric grounds [36]. There the flow generated by dp, was projected onto the
subspace of the Bloch sphere to find the two components of motion, one dissipative
and one due to the Hamiltonian evolution. However, this approach was more of a
heuristic way to find relevant nonlinear extensions of QM and was not rigorously
pursued further. Whereas, SEA formalism is mostly based on geometric grounds,
making it more appealing. But before proceeding with the interpretation, we must

lay down some logic and terminology required to appreciate the picture as in Fig.

2.3.
Consider a set of vectors {vg, vy, -+ ,v,} and the linear manifold spanned by their
real linear combinations as L(vg, vy, -+ ,v,). Given some other vector w not in L,

let w; denote the orthogonal projection onto L, such that for any vector v in L, we
have [15]

vVeuL=v-u. (2.56)
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The projection of w onto L can be expressed using Gram matrix as

T

2%
where, {hy, -, h,}, for r <n span L, and G is the Gram matrix given as under
h,-h, --- h,-h
G=| : . | (2.58)
hy - h, h,-h,

Because the set of vectors, {h,} is composed of linearly independent vectors, the
determinant, det(G) is strictly positive. We can find the component of u orthogonal

to L via the relation

U L =U—UuL. (259)

As mentioned in Ref. [15], there exists a second method of finding the projection,

given as the ratio of two determinants,

0 h, h,
u h1 h1 . h1 hr hl
u-h, hy-h, h,-h,
u = — . (2.60)
hi-hy --- h,-h;
hi-h, h,-h,
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Using Eq. (2.59) and (2.60), we get,

u h1 h'r
w-h, hi-h, - h,-h;
’U,'h,« hl'hr hr'hr
U = . (261)
hy - hy h, - hy
h,-h, h,-h,

Figure 2.3 A geometric interpretation of the SEA EoM.

A comparative study of Eq. (2.52) with (2.61) reveals the underlying geometric
structure clearly. We can consider the linear manifold spanned by the vectors |\U;)
as L. The functional |®) = §5/07 acts as u whose component perpendicular to
the manifold L is the one that drives the diffusion rate equation. In Fig. 2.3, we

see a short arrow lying in the direction of the |®) . This is due to the norm

48



2.8 The relaxation time

fixing of II, as given by Eq. (2.27). The Lagrange’s multipliers f; turn out to be
the components of the projection of |®) onto each of the vectors |¥;). The sum of
these projections form the green vector on the greenish manifold in Fig. 2.3. The
vector difference between |®), and this sum is the perpendicular vector lying in the
purplish manifold orthogonal to the greenish one. Thus we can construct a vector
that seeks out the direction of the gradient that is orthogonal to the manifold
spanned by the constraints of motion [17, 81]. This construction is at the heart of

the SEA approach.

2.8 The relaxation time

The system relaxation time (7) is the most difficult of the Lagrange multipliers
to address in the SEA EoM. The relaxation time associated with the system is
represented by 7. It is related to the pace of evolution of the state operator, as
stated in the literature [15, 17, 21, 22, 81]. Using a Fisher-Rao metric, which
becomes a uniform metric in probability space, one may get the following expression

from Eq. (2.27).

dl . - .
=2Ap A =t (2.6

Here ¢ is a small positive number, which fixes the norm of II, and maximizes the
direction as a consequence [17]. From the evolution equation of state operator vp,

we have,

%zmw:ik—z@q) (263

49



Chapter 2 Steepest Entropy Ascent

Using these two and defining |A) as an affinity vector that draws the motion

towards SEA evolution, one can write the following expressions involving 7 [81]

VA TA)

¢ ) (2.64)
(‘I) - BC |G @ -, 51'01)
I1g '

T =

7 is also inversely related to the rate of entropy formation. As a result, with greater
7, we will witness less entropy creation and dissipation; the system does not relax
rapidly since the speed is high. In the event of low 7 values, the system will relax
faster and entropy formation will be increased. Both these 7 characteristics are
examined in this thesis in chapters 3 and 4. As can be seen, 7 is reliant on p, but
as the literature suggests, constant non-zero 7 can also be useful in revealing the

characteristics of the general motion.

Summary

We have begun this chapter with a brief overview of the phenomenological modeling
of decoherence via the application of a Lindblad-type master equation. We com-
mented on some of the shortcomings of this formalism which acted as motivation
for using the SEA formalism. Thereafter, we introduce and derive the form of the
entropy functional from the principle of reversible and irreversible processes as a
fundamental property of such evolution. We then discuss the concept of stability as
understood in the context of SEA, and rephrase the second law of thermodynamics.
Furthermore, we present a discussion on the ontic status of the mixed states on a
level similar to that of pure states in the von Neumann formalism. This provides
us the necessary background to state the postulates of quantum mechanics and

state the steepest entropy ascent ansatz. We then derive the Beretta SEA equation
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of motion for a single constituent of matter. We have also provided a geometric
backdrop to embed the concept of SEA evolution. Finally, we present our remarks

on the nature and role of the relaxation time parameter.
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The rising sun above the sea,

smothered the duality in me
while its shimmering rays of hope,

sent my doubts flying.






3.1 The Bloch sphere

UR discussion in the previous chapter demonstrated that the steepest
entropy ascent (SEA) formalism maximizes local entropy production in
an isolated system, thus producing ‘spontaneous decoherence’” adhering

to the second law of thermodynamics. However, unless we consider some simple
physical systems and apply the SEA principle, we won'’t be able to appreciate the
robustness of the approach, therefore will miss out on the physical implications
of the same. The simplest possible case to study such a nonlinear evolution is
the two-level system, a qubit. In this chapter, we will consider the qubit and its
evolution under SEA. We will first present the exact analytical solution, followed
by a scalable yet approximated analytical solution. We will conclude the chapter

by comparing these results with full numerical results.

3.1 The Bloch sphere

A general two-level system can be represented by a parametrized form of the
density matrix p. In this form, a vector r is associated with p, such that = is the
radial vector of a Riemann sphere. In literature, this representation is also known
as the Bloch sphere representation [61]. Each point of this sphere is a valid state,
the points on the surface represent idempotent states, p?> = p, while those on the
inside represent mixed-density matrices. As the general two-level system can be

represented by the generators of SU(2) algebra, we get the following representation

p:;(l+'r-a). (3.1)

Where o is the Pauli vector comprised of three traceless 2 x 2 matrices given as

follows

01 = , 09 = , O3 = . (32)
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[soentropic
surfaces

Constant
energy
surfaces

Figure 3.1 Bloch sphere representation of a two-level system. The purple arrow denotes
the Bloch vector r, while the vector along the precession axis for Hamiltonian is denoted
by h using a green arrow. Isoentropic and constant energy surfaces are appropriately

labeled. Image is taken from [81].

One can see from Eq. (3.1), if »r = 0, we get p = %I , which is the maximally mixed
state. Thus at the center of the Bloch sphere lies the state with maximum entropy;,
the value of which is given by, using Eq.(2.19), S = kIn(2). In this form, the

eigenvalues of p are

14+
Ae = =5 " (3.3)

The entropy thus computed has the following dependence on the magnitude r of r,

S =—k[A In(Ay) + A In(A)],
-5t ()]

From Eq. (3.4), it is evident that the entropy function is zero on the surface r = 1.

(3.4)

It is also clear that the constant entropic surfaces are formed by concentric balls
within the Bloch sphere as shown in Fig. 3.1. We also have tr p = 1, and denoting
tr p?2 = R, one can write

r=+v2R—1, (3.5)
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implying 0 < r < 1, for % < R<1.
Similarly, the most general Hamiltonian acting on a point on the sphere can be

written as

H = (wol +wh - o). (3.6)

We identify h as the unit vector in the direction of the axis of rotation induced by

H. We also note the eigenvalues of H are as under
i 1
hy =wy+w, with wy= 5 tr H. (3.7)

The precession frequency is 2w. As Fig. 3.1 shows, for a fixed entropy (fixed r),
the radius vector traces out path along circles perpendicular to h (constant energy

surfaces).

3.2 Exact analytical solution

The exact analytical solution to the two-level system was given by Gian Paolo
Beretta [7]. Before we discuss that here, let us note that for a single particle, only
two constraints i.e., that of energy and probability conservation are required. This

reduces the BSEA equation of motion Eq. (2.52) in the following expression,

pn(p) p 3lp H}
tr(pIn(p)) 1 tr(pH)
if il 1 [te(pH n(p)) tr(pH) tr(pH”) | (35)
1 tr(pH)

tr(pH) tr(pH?)

Because of the constant energy criteria, the Bloch vector = is constrained to rotate

in a plane at a distance r. = h - r from the center about h, see the red dotted
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Figure 3.2 A schematic for showing r. = h - 7.

circled trajectory in Fig. 3.2. The overall SEA motion will drag r towards h such
that r. remains unchanged. Given the definition of p, and H above, we compute

the trace relations below [81]

tr(p) =1,

tr(pH2> = ((wQ + wg) + 2w0wre) ,

tr(pln(p)) = (m(l ‘47”2) mn(ij;)) | (39)
tr(pH In(p)) == <ln<1 _4TQ> +r1n<1f:)>

+w | 1—17r2 +11(1+7‘)
— [ In —1In Te.
2 4 T 1—17r

Using these traces, we can find the expressions for Lagrange’s multipliers using
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3.2 Exact analytical solution

Eq. (2.48), and (2.49) with two constraints. Note, Q = tr(pH?) — (tr(pH))?. We

have
1 2
b= g [tr(plnp) tr(pH?) — tr(pH Inp) tr(pH))|
] (3.10)
o= g ltr(plnp) tr(pH) — tr(pH In p)] .
Let us denote the following,
2
A= <ln<1 r ) +rln(1+r ),
4 1—r
, (3.11)
B= (m( " +1ln(1+r
4 r 1—r
Using Egs. (3.9), (3.10), and (3.11), we get
—n _ 1 2 2
/BI:/Bl = M[w [A—reB:| +(.U(.U0 [A—B}], (312)
T
=p=——"—[A-B]. 3.13
BH ﬂ? 2w (1 _ rg) [ ] ( )

Next, we find the expressions for the commutation and anti-commutations given

as under

[H,p] =iw(h xXT)-0,

{H,p} = (wo+wre) I + (wor +wh) -0, (3.14)
1

}

Now that we have gathered all the necessary expressions, let us recall Eq. (2.53),

and employ them for the dissipative part as follows,

(3.15)

- 1—r r

d(rC; re) _271(1_—Tjag) m(l + r) (r—ro)
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Chapter 3 SEA in a Two-level System

In writing the above differential equation, we have used % = %i—: -o,and r. =r.h.

If we confine the motion on the equatorial plane perpendicular to the vector h on

the Bloch sphere, we get r, = 0, see Fig. 3.2. Setting this, we have the following

equation [7, 81],

dr 1 1+7r
— 5=, 1
TR A s (3.16)
The solution to the above equation is given as (r° = r(0) = ¢),
1 t I+e¢
ry = tanh {2 exp(—T) 111(1 _Eﬂ : (3.17)

Since this solution was first given by Beretta, we will refer to this solution as the

Gian Paolo Beretta (GPB) solution.

3.3 Fixed Lagrange’s multiplier method

The GPB solution, without any doubt, is elegant and exact. However, it cannot
be scaled to systems with higher dimensionality (more than two-level systems).
Besides, the GPB solution is not available for r. # 0 states, which leaves most of
the Bloch sphere unexplored. As a consequence one resorts to numerical techniques
[20]. While numerical solutions are exact and using current computing resources
doesn’t require much time to be solved, they suffer from two major setbacks.
Firstly, the numerical solutions obscure the interesting features and clues of the
underlying physical implications of the solutions presented. Secondly, as we scale
up in dimensions, and include more complex studies to undertake, these solutions
require a lot of computational resources, which may not be readily available. To
address and resolve this, in a recent work [81], this author developed an approximate
analytical method to solve the SEA EoM for a single particle. The method relies

on fixing the f;’s as used in Eq. (2.53). This means fixing the component of the
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3.3 Fixed Lagrange’s multiplier method

projections on the constraint manifold as discussed in Sec. 2.7. As a result,
we do not get the exact solution, but it has been shown in Ref. [81], in higher
dimensions we get a good agreement with the numerical results. Since one fixes
the f;s, i.e., the Lagrange’s multipliers, this solution method is known as the fixed
Lagrange’s multiplier (FLM) scheme. Depending on the region of interest, such
as near equilibrium or far-off equilibrium, one fixes the ;s accordingly. Below we
outline the solution via FLM, and then in the next section, we compare FLM with
GPB and numerical results for the two-level system under discussion.

We note that p;, the density matrix at time ¢ is a unit trace, semi-positive definite
matrix for all £ during the evolution of the state, suggesting it can be diagonalized
throughout the process. We can use this property and the following definition

using similarity transformation to go to the diagonal basis of p; at all times.

Definition 3.3.1. U, exist at each time instance ¢ which takes p; to a diagonal
matrix p¢ as given,

pr = UpfU L. (3.18)

Next, we state and prove a theorem on the first-order time derivative of time-

dependent square matrices,

Theorem 3.3.1. For a time-dependent square matriz A(t), with left and right

eigenvectors as'y; and x;, respectively, and corresponding eigenvalue \;, we have,

A\ pdA

ac Vi

(3.19)
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Chapter 3 SEA in a Two-level System

Proof. We note the following facts,

AXZ‘ = )\Z‘Xi, (320)
viA = Ayl (3.21)
Y;FX]' = 0;j. (3.22)

Combining all of the above, we get the following equation,

Vi Ax; = \i. (3.23)

Taking derivatives on both sides, we get (suppressing the index i),

dy™ rdA rdx dA

WAX"‘Y EX"‘Y Aa— E,

dy™ rdA rdx  dA
=\ - Ay — = —— 24
a TV Y W T (3:24)

d(yTx) rdA dA

A[ a |7V T W

From the last line, and using Eq. (3.22), we get the main result,

Ay pdA

=yl x,. 3.25
Vg™ (3.25)
O
A direct consequence of the above theorem is the following result,
dA dA
— =Y—X" 3.26
dt dt (3.26)

where Y and X are created by column-wise stacking the respective eigenvectors,

while A = diag [)\;]. We note that, in our case of p;, The 3.3.1 suggests that, U; =Y,
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3.3 Fixed Lagrange’s multiplier method

and U; ' = X. Having established this identification, we consider Eq. (2.53) and
multiply it from left and right with U; ' and U, respectively. This implies we get

the following equation,

“Zf = —217 [{ln(p?),p?} + ;<—1>iﬁi{cﬂ,pz’}] —i[H, pf]. (3.27)
In the above equation, we have used H? = U;'HU,, and C¢ = U;*C;U,. In the
restricted class of problems, for which the eigenbasis of p changes solely due to
the Hamiltonian, we can have U; as constant [81]. In essence, this means that p
remains diagonal in the energy basis throughout the evolution. Since most of the
problems encountered in this thesis belong to this special class of problems, we
will focus our attention here.
p has a spectral decomposition in its eigenbasis {|\;)}, and p? is diagonal in the

standard basis {|i)} (]7) is an N-dimensional unit vector),

p= Z)\z’ Al
ph =2 Nidi; li)sl;  and ' (3.28)
g = Z Aidij [AifAg] -
ij

d;; is the Kronecker delta. Using these expansions in equation (3.27), and by
choosing [Hd} = HY

ij X

and [Csd} = C?

ij L’

the r.h.s of equation (3.27) can be
modified as,

1 N
= 5= 2 Gin [P ) + (=18, D+ A1 | 1

2T £
m

(3.29)
~ i3 [y — MHE [l

65



Chapter 3 SEA in a Two-level System

The complete expression upon considering a Euclidean metric reads as

D Ny )] = =i 30 [\ — A H iG]

X (3.30)
ij
According to our construction Lh.s of equation (3.27) is diagonal,
d\; 1 J
d = —; {/\Z ln(/\z) - B[)\Z + BHAan} . (331)

For diagonal density matrices, similarity transformation is identity, so we get,

dpi__l
dt 7

[pi In(p;) — Bipi + BupiHil, (3.32)

where p; = [p],;. Both the equations (3.31), and (3.32) have a similar type
of solution, namely that of almost identical non-linear ODE. Using standard

techniques and FLM approximation, we arrive at the following expression,

pi(t) = exp (exp (wz- - i) + B — 5HHii). (3.33)

We have w; = In(In(p) — 87 + Bu Hy;), where p? is the i*" diagonal entry of initial p.
The solution produced above can be written in a straightforward form, identifying
wé = B Hy;—py, or for general cases as Y- (—1)0:C%; 0; = e*i, and p! = exp(—t/71),
we get,

pi(t) = ph = exp (T — pif). (3.34)
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3.4 FLM on a qubit

And we find 7; as,

pi(0) = py, (3.35)
exp(@i,uo — uf) = p?, (3.36)
= ;= ln(p?) + 1. (3.37)

Hence, we can write p = 3, p! |i)(i]. For a general initial p with off-diagonal terms
can be written as - p = UypfU; *, whereas if we consider only diagonal p’s, we get
p = pl. Including the Hamiltonian evolution, we get the following equation for

uniform metric (U; = exp(—iHt), and projections P, = |m)m|),

pr = UUy (Z exp(ph, — anwm) Uy, (3.38)

where, uf, = (In(p?,) + &) e /7 = tpt, and pé, = S (—1)°B,C2,, . So far, as we
can see, equation (3.38) represents the evolution of p;s diagonal in the energy basis.
Thus we have a general FLM solution for N-level systems. In the next section, we

will apply this to the case of qubits and analyze with respect to numerical solutions

of the Eq. (2.53).

3.4 FLM on a qubit

Since pure states form the limit cycles of the SEA motion, they follow Schrodinger
dynamics. To study the SEA dynamics, one, therefore, quenches the system from

a pure state and prepares it in a mixed state [20].

p=epo+ (L —¢)pu

Do)l =D N DN

i

I (3.39)

+(1—¢) D

67



Chapter 3 SEA in a Two-level System

If p is diagonal in the py basis, then

1

N=eXt(1-e)= 4
i=eAi+(l-e), (3.40)

where N = tr(I), which for qubit is 2. ¢ is a variable parameter € [0, 1], with zero
value denoting the completely mixed state. Armed with all these and a Euclidean

metric, we consider Eqs. (3.31),(3.3),

dA 1
—= === Peln(g) + (B HE — Br)A<]
« 1 1+ (3-41)
— wi =5 [0 () + @Gl - ) (1) .
After that, we can write for the dissipative part of the motion as before,
ry=—1+2exp((p, —ps)), for Ay, and
(1 = 1)) 12
ry =1— Zexp(<ut_ — /f_)), for A_.
Thence,
ry = (exp(ui — ui) — exp(ut_ — ,ui)) , (3.43)
and also,
As(t) = exp(pl — pis.). (3.44)

Where, ply = (ln()\’i) + (BuHy — 61)) e~7, X as in equation (3.40). The full

evolution is given by,

ex t _ ,,c
U, (s~ ) U (3.45)

exp(pt — p°)
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Figure 3.3  Relaxation time dependence decay of the magnitude of the Bloch radius 74

over time. FLM computations using initial p to fix the ;s are denoted by solid lines,
GPB Eq. (3.17) are plotted using dot-dash, and the direct numerical simulation (NUM)
of Eq. (2.53) are shown in dotted lines. Image cited from Ref. [81].

This solution above in Eq. (3.45) works when we have Lagrange multipliers fixed

using initial conditions 7.e., FLM method. Otherwise, in general (;’s depend on

time-dependent r and on constant r, = h-F.

Let us now understand the SEA approach through simple well-known, and

well-studied physical conditions. We take h = z, and focus on the states lying on
the equatorial plane of the Bloch sphere, r. = 0. H in this scenario becomes wo,
which is diagonal in the standard basis. Using the expression for X' provided in

equation (3.40), we write down the f3;’s as (Egs. (3.12), and (3.13)),

k 1 —¢? 1+e¢
or=5 [hl( 1 >+€ln<1—a)]’

By = 0.

(3.46)

Let the initial p be a|0)X0| + b|1)X1|. Then radius " after quenching is r’ =
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Figure 3.4 Relaxation time dependence decay of the magnitude of the Bloch radius
r¢ over time. FLM computations using final p to fix the ;s are denoted by solid lines,
GPB Eq. (3.17) are plotted using dot-dash, and the direct numerical simulation (NUM)
of Eq. (2.53) are shown in dotted lines. Image cited from Ref. [81].

er = ela — b|l. We get, puf, = (ln(%e) — 61) e~7, and pS = fB;. And finally, the

evolution equation becomes,

= (69i — eet—) , (3.47)

where, 0, = p' — ps.

Using the Eq. (3.47) for w = 5, and ¢ = 0.999 (just an arbitrary number close to
one), one can plot the evolution of r; vs time as in Fig. 3.3. In this figure, we
have plotted r; for various values of the relaxation time of the system. In the same
figure, we have also included the GPB solution (Eq.(3.17)), and the numerical
solution (NUM) resulting from solving Eq. (2.53). As we can see from the figure,
FLM results fit nicely within the neighborhood of GPB/NUM solutions. However,
it depends on what kind of initial condition are we basing our FLM computation

on. In Fig. 3.3, we have considered FLM values from the far-off equilibrium region.
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3.4 FLM on a qubit

Meaning, we have computed ;s from initial density matrices.

1.0
0.5 / .\ ‘
0.0 wt’f@ ’ \
M=,
-1.0

-1.0 -0.5 0.0 0.5 1.0
(a)

— 400

— 0.1
— 100

(b)

Figure 3.5  (a) 7 dependent spirals formed by tracing the state operator in the equatorial
plane of the Bloch sphere as viewed towards Nadir from the North pole. The evolution
has been studied till ¢ = 30. (b) The same spirals are projected onto the surface of
revolution generated from the entropy function in Eq.(3.4). The case with 7 = 400
corresponds to the case with € = 0.5, while the rest of the cases have ¢ = 0.999. Lower 7

states rise faster, and the lowest has the steepest ascent. Image cited from Ref. [81].

However, if we computed the same using p, instead, the FLM fit might not
have given such a nice overall behavior, see Fig. 3.4. This suggests the following,
whilst the FLM scheme works nice enough to approximate the exact analytical
solution for the two-level case, and is not limited by special conditions such as
being restricted to the equatorial plane of the Bloch sphere, care must be taken as

to what values we are considering for computing the g;s in FLM. For example, if
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Chapter 3 SEA in a Two-level System

our interest is in observing equilibrium behavior better, we should go with FLM
computed using p, as in Fig. 3.4. Although, for a better approximation of far from
equilibrium behavior, FLM at some initial p seems to do a better job, see Fig. 3.3.
As evident from the form of the general dynamical Eq. (2.55), T acts as modulating
factor, where high 7 results in a smaller dissipation contribution. Besides, system
relaxation time 7 is inversely proportional to the rate of entropy production as
in Eq. (2.64). Following a quenching process, the system relaxes and could either
thermalize or localize. This behavior is dependent mainly on the speed at which
this happens. Higher 7 implies slower relaxation, while as commented in literature,
lower positive values of 7 result in the steepest ascent of entropy, as we see in
Fig. 3.5 which is due to faster relaxation. In the expression of p; Eq. (3.33),
t

the exponent has (=%) dependence, which implies in £ << 1 we will have a

non-dissipative feature, and at ﬁ ~ 1, we will have the desired dissipation.

From Fig. 3.3, we see higher 7 valued states will have more delayed and gradual
relaxation. We show the spiraling motion to the center of the Bloch sphere on the
equatorial plane in Fig. 3.5(a). Here, we see that high 7 states remain near the
pure states for a longer time than low-valued ones, as they almost instantaneously
mix to the maximum entropic state. These low values of 7 trajectories represent
the steepest entropy ascent solution. This steep ascent can be better visualized
when we consider the surface of revolution generated from the entropy functional
in Eq. (3.4) and plot these spiral trajectories onto that surface as shown in Fig.
3.5(b). We can see that as time passes, each trajectory strives to reach the top of
the surface, where the point with the highest entropy is located. We can also see
that high 7 states maintain a limiting characteristic at the bottom of the surface
of revolution, taking nearly forever to reach the top (unitary type behavior). Fig.
3.6 depicts a schematic development of the generic non-energy conserving motion

for a qubit under SEA. As the value of energy falls, so does the value of r.. The

72



3.4 FLM on a qubit

Constant energy
surfaces

Constant entropy
surfaces

Figure 3.6  Schematic representation of non-energy conserving SEA evolution of the
Bloch vector for a qubit. The purple trajectory denotes the said dynamics. Image cited
from Ref. [81].

state arrives at the global equilibrium when it reaches zero at the center.

Summary

In brief, in this chapter, we have seen a first-hand application of SEA. We first
presented the GPB solution, which is exact. we introduced our approximation
method namely, the fixed Lagrange’s multiplier method. We compared the FLM
solution for qubit computed at different conditions with the exact GPB and full
numerical results of BSEA. We then commented on the nature of trajectories under

this scheme onto the Bloch sphere and the entropy surface.
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I entered the uncertain realm,

with my tools and my hopes.
I paved new scopes,

and kept on traversing.






4.1 Theoretical minimum

OLLOWING the discussion of the steepest entropy ascent formalism for

a qubit, i.e., a two-level system, it is only natural that we present the

extension of the same to a N-level system. As the Bloch sphere picture

was quite intuitive for the case of a qubit, it is not so when it comes to more than
two-level systems. One of the major reasons being the increase in the dimensionality
of the sphere, for a N-level system, our Bloch sphere will reside in a space of
N2 —1 dimensions, which is not at all intuitive [63]. Therefore, we look for different
modeling of the same. We arrive at the doorstep of the continuous-time quantum
walker model, which easily allows us to understand the behavior of a N-level
quantum system through some applications of graph theory and related topics. In
this chapter, we will study SEA on a single walker performing a continuous-time
quantum walk. We will begin with a short review of the theoretical background
required by the said study, and will then follow up with the application of the FLM
scheme developed in the previous chapter. Our subsequent analysis will include a
comparison with numerical results, the dependence of Lagrange’s multipliers ;s
upon the dimensionality of the system among other parameters, and a closer look

at the entropy production rate for this system.

4.1 Theoretical minimum

As discussed in chapter 1, the continuous-time quantum walker (CTQW) is a
quantum analog of the classical walker. One considers a walker (a resident of the
quantum realm), beginning the journey on a grid of some fashion. A graph is
usually employed to describe the said network. In the classical case, the walker
would toss a coin, and depending on the outcome will choose one path from the set
of multiple options available to it. However, in the quantum case, and especially in

the case of continuous-time motion, the walker has the opportunity of exploiting
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Chapter 4 SEA in a N-level System

the linear superposition of all the available paths as long as there is no measurement
of position or any other walk-dependent parameters involved. In the CTQW, there
is a hopping probability associated with each neighborhood point for the walker,
and the transition can happen at any time. Hence the name continuous-time [41,
82].

A traditional way of modeling a random walk process involves a graph. A graph G
is a set of nodes or vertices V = {v;}, and the connections between those vertices
are called edges E = {e;;|v;, v; are connected}. There exists an extensive literature
on various types of graphs and the consequences of performing walks on them.
However, for this thesis, we are only interested in CTQW as a model. Hence we
consider a quantum walker walking on some undirected graph G. G has no double
edge or self-loops, and the number of vertices N = |V|. The adjacency matrix A

of G can be defined as follows,

1 if €ij ek
Aa;= (4.1)

0 otherwise.

Thereafter, we can define the Laplacian L of G as [44, 83],
L=D-_A, (4.2)

D is diagonal and has an entry as the degree of the i*® vertex, d;. We associate a
hopping probability j;; with the probability of transition between two adjacent
vertices (v;, v; ) per unit time. Considering uniform transition rates p,;; = p, for

the unitary continuous-time quantum walker we can write [41, 44, 50],

d|)

i
= ——uL|¥). 4.
= L) (13)
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4.2 FLM on a CTQW

In Eq. (4.3), the quantity pL is identified as the Hamiltonian H of the CTQW.

The solution to Eq. (4.3) is read as,
[W(1)) = exp(—iuLt) [W(0)) = U(t) |W(0)) = U [W(0)) (4.4)

where, |U(0)) is the initial state of the walk, and A = 1. In terms of density matrix
p, we can write Eq. (4.4) as,

pe = Usp'U;, (4.5)

implying that the quantum state of the walker undergoes unitary rotation in the

state space as the walker exhibits CTQW.

4.2 FLM on a CTQW

The usual probability distribution computed from Eq. (4.5) for a walker performing
CTQW on a ring of N = 100 nodes after some time ¢ = 10 is shown in Fig. 4.1,
which is similar to CTQW walk distribution on a line for a short time and large N.
It is to be noted while we find probability distributions such as this at some time ¢,
they are not the same for the discrete and continuous cases. In the continuous case,
we have transition amplitudes per unit time (u), and we consider probabilities at
some instance post-initiation. These instances can be recorded as steps. Wherein
for the discrete case, a coin operation followed by a swap operation constitutes
a step. For simplicity, we have considered p = 1 [41], which means an unbiased
transition to any adjacent vertex in an undirected graph G with no loops !. We
use the standard basis to describe the density matrix of the walker at some given

time as

o= Y rliNil, (4.6)

'In the Fig. 4.1, we have only shown the nodes up to which the walker has spread after t=10;
it does not show all nodes.
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Figure 4.1  Plot of the probability vs nodes for a single continuous-time quantum walker
on a cycle graph of 100 vertices (nodes) after time ¢ = 10. The walker was initiated at

node 50, which is shifted here to zero for symmetry. Image cited from Ref. [81].

pt is the probability of finding the walker on a node (vertex) i after some time ¢

since the initiation of the walk. Laplacian of G can be expressed as

L=D-A
o e (4.7)
=>_ (didi; 1)) — By (|a)] + 15Xil)) .
ij
E;; = 1 when there is an edge element e;; € E, and zero otherwise. For the

Hamiltonian in the standard basis; the diagonal elements are simply entries of D,
HE = ud;, d; is the degree at the vertex v;. So in the case of these walks, using the

computation of j3; carried out below, the Eq. (3.38) becomes,
p: = exp(—iHt) (Z exp (,ufn — u%)]?m> exp(iHt), (4.8)

where, u!, = (In(p%) + us,) e ™ = Gy, and pé, = pBpd; — By, and P, is the
projection operator. p? is found using Eq. (3.40). We model the walk using

fixed parameters defined beforehand so that we can characterize and comprehend
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Figure 4.2  Plot of ariation of Lagrange multipliers 5; over time. In the legend, 5y is
tagged, as it varies for different NV and e values. By is the constant line y = 0. Image

cited from Ref. [81].

the solutions to Eq. (4.8). A cycle graph Cy being 2-regular, has the following

Hamiltonian in the standard basis,

H= Z (21Xl = By ([i)| + 7)) (4.9)

where ¢ = i (mod N) + 1. Using this H, and the equilibrium distribution p,,

1
pu = —1, and H as given in Eq. (4.9), we begin by computing trace function as
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required in the Eqs. (3.8) which are as given below:

tr(p) =1,
tr(pH) =d,
tr(pH?) =N (d* +2), (4.10)

tr(pIn(p)) = — In(N),

tr(pH In(p)) = — dIn(N).
Using these traces and noticing that € is given by
tr(pH?) tr(p) — (tr(pH))* = (N — 1) d® + 2N, (4.11)
we can write the expressions below for f;s,

ﬁH:()a

BI - - hl(N),

(4.12)

with £ = 1. In Fig. 4.2, we plot the variation of §; for two different N values
of 50 and 30, respectively. We numerically solve the Eq. (3.8) and use the p
thus produced at each iteration to compute ;s as defined in Eqs. (2.48), (2.49).
We can see from the plot that the final value of 5; is dependent on N and mean
energy. Consider the red and black lines, for instance. As time passes, we observe
that they merge towards a consistent value provided by Eq. (4.12), implying that
although there is an initial dependency on ¢, as equilibrium approaches, all of the
[ take the same value. If one desires to evaluate the behavior far from equilibrium,
it is prudent to consider the initial 5; in FLM. Otherwise, using an equilibrium
distribution to fix the multipliers for FLM will correctly describe equilibrium

behavior. The By plot is shown by the y = 0 line in the graph, which remains
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4.3 Analysis of SEA evolution

constant in this case. The variation in (; lies within a single order of magnitude
and does not reflect a strong difference in probability amplitudes, as seen in Fig.

4.3.

4.3 Analysis of SEA evolution

4.3.1 Probability amplitudes
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Figure 4.3 Probability amplitudes for a single CTQW under SEA on a cycle of 100
nodes under SEA conditions after ¢ = 20, initiated at node 50 (shifted to node 0 for
symmetry), after ¢ = 20. The amplitudes are plotted for various relaxation times 7 as
given in the legend. ¢ is 0.99. The plot compares the analytic solution found using the
FLM method (solid lines in the plot) and those (dotted lines in the plot above) from
the numerical solution to the Eq. (3.8) using CTQW Hamiltonian and other relevant
substitutions. Image cited from Ref. [81].

To analyze the solution got from FLM, we begin by plotting the probability
amplitudes. Using appropriate 7 values, we get Fig. 4.3. we find from the plot,
that the FLM (solid lines) and NUM (dotted lines, numerical solution of Eq. (3.8))

are not distinguishable from each other through visual observation alone. As seen

85



Chapter 4 SEA in a N-level System

in the plot, the probability amplitudes are of the order of 1072. From our numerical
computation, we've estimated the difference of NUM with FLM results, which is
of the order 107 for low 7, and of the order 103 for high 7s. We see, for the
distributions considered after ¢ = 20, a similarity in the behavior of probability
emerges as in Figs 3.3, 3.5(a). Higher 7 or states closer to unitary states tend to
relax slower. For low enough 7, the rapid relaxation of the system is observed
in Fig. 4.3, and all initial information is lost. On the other hand, high 7 states
having lesser entropy generation rates drive the system toward unitary-like behavior.
This can also be understood in terms of the localization and delocalization of the
walker. The probability distribution for the case of 7 = 0.2 in Fig. 4.3 shows
strong delocalization. While in the same figure, because of 7 = 50.11,100.02, and
t = 20 < 7, we can say decoherence is yet to set in. That is, it displays linear
behavior. As understood so far, low 7 results in more non-linear behavior. But
how low? Unfortunately, the answer to such a question remains elusive [9]. In
the following, we try to figure that out by using entropy and the rate of entropy

production.

4.3.2 Entropy and energy

We first begin by checking whether, despite all the nonlinear evolution, energy
indeed remains conserved. To do so, we plot the function tr(pH) for different
7 values in Fig. 4.4(a). To check for consistency we plot both the FLM and
NUM results. We see energy is constant throughout the dynamics. This implies
that the FLM solution respects the primary constraints of motion, and agrees
with the numerical results. To further check the efficacy of FLM, we plot the
entropy functional (—tr(pln p)) against the same set of 7s as in Fig. 4.4(a) in Fig.
4.4(b) for both FLM and NUM results. We find a good agreement again, except

for the high 7 case. Here, we see FLM surpassing NUM values, which is to be
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Figure 4.4 (a) Plot of average energy vs time, and (b) entropy vs time for a CTQW on
a cycle graph of 100 nodes for various 7 (first column in the legend) values and e = 0.99.
The walk was performed up to t = 100. FLM (solid lines) denotes the analytically
computed results, while NUM (dotted lines) denotes the numerical results. Image cited
from Ref. [81].

expected because FLM is an approximation after all. Yet the agreement between
the two is reassuring for our scheme. We note that in Fig. 4.4(b), except for the
low 7 case, where entropy directly shoots up to the maximum value, there is a
monotonous increment. This validates the construction of SEA EoM, which is
based on the entropy non-decrease principle. We proceed then to plot the rate of

entropy production for similar data. Ilg, the entropy generation rate functional

from Eqgs. (2.24), (2.31) is given by,

g = — ktr((ln(p) +1) ‘if)

=2k” tr((In(p) + 1) L{In(p), p}) + 2> _(—1)'Bi tr((In(p) + 1) (LCip + pCiL)).

7

(4.13)

Using £ = ﬁ, we get,
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Figure 4.5 Plot of the rate of change of entropy vs time for a CTQW on a cycle graph
of 100 nodes for (a) 7 = 0.2, and (b) 7 = (50.11,100.02) with e = 0.99. FLM (solid
lines) denotes the analytically computed results, while NUM (dotted lines) denotes the

numerical results. Image cited from Ref. [81].

HS:;_(tr((ln( )+ D{In(o), o)) + (15, (o )+ D{Coph). (4.14)

As before, we see a good agreement between the numerical and FLM results in
Fig. 4.5. We begin with the panel of Fig. 4.5(a), where we see within ¢ < 0.1 the
graph peaks around the value 32, which is twice the order of magnitude higher in
other high 7 cases Fig. 4.5(b). Hence, we see a visual confirmation of the SEA
ansatz that the steepest entropic path is also the one with the maximum entropy
production rate. And this happens at low 7 values. Also, as noticed in Fig. 3.3,
as T increases, we see differences between FLM and NUM results. Despite this
difference, there is a strong agreement at initial and later ts. This suggests FLM
can be relied on to faithfully study the ‘overall’ nature of the dynamics. It goes
without saying, for very precise results at high 7, one should rely on NUM results

instead of FLM. As we can see, none of the plots discussed so far have been able
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105

Figure 4.6 Contour containing Ilg values for a CTQW of N = 50 vs variation in 7 and
e after time ¢ = 1 in (a), and ¢t = 3 in (b). The color bars provide the range and contrast
of Ilg values. As discussed in this chapter, the high IIg valued zones are concentrated
around high € and low 7 values. These deep purple areas bounded in cyan represent the
maximum entropy generation area. In the insets of panels (a) and (b): zoomed-in view

of the bounded region displaying max IIg. Image cited from Ref. [81].

to give us an indication of how low 7 could be, only suggesting the lower the 7
the steepest the ascent is. To get an approximate picture of this behavior we
consider instead ‘areas’ of the high rate of entropy production Ilg (4.14) against 7
and ¢ values as given in Fig. 4.6 for a CTQW with N = 50. 7 has the greatest
contribution to defining Ilg; as seen in Fig. 4.6, higher relaxation times result in
essentially negligible entropy formation, which is consistent with our prior findings.
As seen in Fig. 4.6(a), lower 7 states yield larger IIg values early on, which is
typical SEA behavior. Furthermore, as time passes, the highest I1g states (bounded
by the cyan line in the plots) begin to move higher along the right side of the
figures, as seen in Fig. 4.6(b). Only large 7 valued states remain yet to equilibrate,
causing a change in entropy. It is worth noting that the amount e, by definition,

reflects how pure the original state is. As a result, a state with low ¢ is projected
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Chapter 4 SEA in a N-level System

to attain equilibrium (that is, a noisy state grows louder) rather quickly. However,
as shown in Fig. 4.6, the rate of entropy production may not be at its peak in
those cases. Under SEA evolution, states nearest to pure states have the highest
entropy generation rate (the deep purple shaded contours in the diagram). This
pattern may be explained by the fact that under the Bloch sphere representation,
low entropic states located away from equilibrium must undergo a greater change
in entropy while equilibrating. As a result, despite noisy channels growing noisier,

their low information content accounts for a low entropy production rate.

Summary

To summarize, we have studied the continuous-time quantum walker under the
steepest entropy ascent formalism on a simple cycle graph of N vertices (nodes).
We have applied the fixed Lagrange’s multiplier method developed earlier on the
walker evolution. We have demonstrated the justification for using FLM by showing
the slow variation of the multipliers over time. We have established the efficacy of
FLM by performing various analyses while simultaneously comparing those results

with exact numerical values.
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Complezities grew and surrounded,

my path became quiet and bounded,
as the limitations became physical,

and difficulties astounding.






5.1 The Bloch parametrization

EFORE we begin to contemplate the nature of SEA evolution of a com-
posite system analytically, we must digress. It is imperative that we
set the necessary foundation for the mathematical background here.

As we have noted earlier, in general, Bloch vector formalism does not provide a
bijective map between the space containing all the Bloch vectors of unit radius and
the density matrices that represent a physical system [69]. Consequently, we deal
with nontrivial parametrizations, and the results are not always as convenient and
satisfying as that of the two-level systems. As seen in the previous chapter, similar
arguments led us to use the continuous-time quantum walker model to understand
N —level systems. However, one can wish to study SEA evolution analytically for
a lower dimensional composite, for example, a two-qubit system. Besides, a proper
parametrization can also provide a testing ground for further research involving
two qubits analytically. While some concepts such as the Werner state [84] and
EPR pairs [85] have been well studied and understood along with the separable
cases, the case for mixed states are not so well researched. Here, in this chapter, we
will discuss Bloch parametrization. We will introduce some new results regarding
the eigenvalues of Bloch vectors for three and four-level systems using some general

parametrizations as found in the literature.

5.1 The Bloch parametrization

The case of extending the concept of Bloch vectors from two-level systems to
N —level system has garnered considerable attention over the years. Basically, one
needs to generalize the traceless Pauli matrices to higher dimensions to have a
mutually orthogonal basis, and expand the general N x N Hermitian positive
semidefinite matrix (i.e., p) in such suitable basis involving N? terms. One of the

most prominent methods is the multipole expansion method by Park et. al. [63, 64].
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Chapter 5 The Bloch Vector for N>2

In this approach the basis used is generated using concepts derived analogous to the
algebra involving spins, hence Clebsch-Gordan coefficients are used. On the other
hand, using generators of SU(N) one can use the ‘generalized Gell-Mann’ (GGM)
matrices to compute the required set of orthogonal basis [66-69]. The benefit of
the latter approach lies in the non-requirement of Clebsch-Gordan coefficient and
an iterable method of getting the complete basis. In this thesis, we have followed

the method of GGM basis for the sake of all computations.

5.1.1 The generalized Gell-Mann matrix representation

The general Bloch vector formalism when applied to a N—level system becomes,

1 N(N —1)
=— |1 ——r-T]. 5.1
P N ( N+ 5 r ) (5.1)
r is a N? — 1-dimensional vector with the components given as {ry,rs, -+ ,7n2_1}

and \/ZN 72 =r. Iy isan N x N identity matrix. Defining dyadic operators
or dyads as P(i,7) = |i)(j|, we can define the N? — 1 generators of SU(N) as

components of the vector I' as [69] follows. Firstly, there are N — 1 diagonal

Fg_” £+1 (Z]ij IP’(€+1,€+1)), (5.2)

for 1 <¢ < N — 1. Then we have the following N (NN — 1) operators of the form

operators,

[s =P(j,1) + P4, 5), for 1<i<j<N (5.3)
T, =i(P(,i) —P(3i,j)), for 1<i<j<N, (5.4)
N(N +1) N(N +1)

additionally, we have N < s < —1, and < a < N?—1, which

2
implies I' = {I',} U{T's} U {L,}.

Although the above expansion of basis is easy to follow, it does not help in
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5.1 The Bloch parametrization

ensuring that p is positive semidefinite. We can state this more formally in the
following way. Consider the diagonalization of p using the similarity transformation
given as below

Dy =UpUT, (5.5)

where U is unitary, and p is such that eigenvalue \; = X\;(p) > 0, and tr(p) =
i Ai = 1. Since p is unitarily similar to Dy, a parametrization of Dy will imply
the same for p. Now, let us consider the parameter set Qn € RM where M = M(N)
[69]. As we have seen with the eigenvalues of p for N = 2 (see Chapter 3), we see

for r < 1 the following

Q= {reR’:r <1} =B(R%, (5.6)

where B(R?) denotes a closed unit ball in R? centered at the origin. A map (Fy(7))
exists that takes the elements from Q, to the matrices D, as in Eq. (5.5) as below
66, 69]

1 14+r3s 7 —ir

FQ('I") = = , T € QQ. (57)

T1+i7"2 1—7”3

This map is onto Dy and one-to-one. Thus (Qs, Fs) is a parametrization of Dy
with M = N? — 1 = 3, and the parameter set Q, forms the Bloch ball. Having
established this notation, now we can formally state the problem of parametrization

when it comes to N > 2.

5.1.2 The general parametrization

Firstly, we need to identify Qx. To do that, a straightforward approach would

require considering the characteristic polynomial of Eq. (5.1), which can be given
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by [69, 86]
N . .
det My —p) =Y _(-1)'a; AV, ag = 1. (5.8)
=0
The coefficients a; are determined by the generators I'; and the parameters r =
(r,-- ,ry2_1) € RN*71. Let the roots of the polynomial in Eq. (5.8) be Ay, - Ay.

Then we can write

2(-1)@'@“1 = 1]1 (A=X\)=0. (5.9)

Before we proceed to find the relations between the roots and the coefficients aj,

we notice the following relations between the generators [86],

=1, tr(ly) =0, to(I,T;) =20y, (5.10)
N2-1 4 N2-1

T =21 > fiple, {075} = N(Sij]N +2 Y gl (5.11)
k=1 k=1

Here, f;jx is a completely antisymmetric tensor, and g;;; is a completely symmetric

one. These are the structure constants of the Lie algebra of su(N).

Now we focus on the relation between the coefficients and the roots. First,
we note that the necessary and sufficient condition for the roots to be positive
semidefinite is that the coefficients be positive semidefinite and vice versa. Formally

stated as below [69, 86]

AN>0(G=1,---,N) < a¢>0(=1,---,N). (5.12)

The Eq. (5.12) can be proved using Vieta’s formula given as

N

1Si1<i2<---i]’
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5.1 The Bloch parametrization

These coefficients can be computed explicitly as follows:

la; = 1,
= (S5 7)
3lag = ((N - 1]2[(2]\] —2) — 3(]\;]\_[ 2>7’2 + ;jzk:i gijkrﬁjrk) ) (5.14)
o ((N YW DN Y AN AW ), AN )
+2<NN_3) 'Ni_:l GijkTiT T — i . Nil gijkgklprirjrlrp)
irj k=1 ikl p=1

However, this cumbersome-looking result can be made more convenient by using
trace invariants [69]. But before that, we need to use Newton’s formula involving
sums of powers of roots and the coefficients of the polynomials as under [86]. Let

us use Eq. (5.9) and get the following using Newton’s formulas

k
kap = (=1)"'Cniar—; (1 <k <N). (5.15)

i=1

We have defined the power of roots as the collective C'ly; = E;-V:l )\3 This allows

us to write the following

1!(11 = CN71,
2lay = (C%,— Ca),
3!&3 = (C]:if,l — 3CN,ICN,2 + 20]\773) s (516)

tlay = (Chy —6C3 Crva +8Cx1Chs +3C% 5 — 6Cna) |

To find the Cy; let us use the following trace relationship using Eq. (5.10) and
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Eq. (5.11),

tI‘(FinFk) = ZZijlm

4
tr(0,T;0T)) = N&-jékz + 22ijmZmkls

4

\ (5.17)
tr(FzF]FkrlFm) = Naijzklm + Nélmzijk + 22ijnznk’ozolm7

T

while denoting z;x = gijx + ifijr. Using Eq. (5.1), we note Cx,; = tr(p'). This

allows us to use Eq. (5.17) to write the following expressions

Cny= 1,

Cnz= (4N +2N*?) N

Cns = (8N + 12N?r2 4+ 2N37’,-7’jrkg,-jk) (2;[)3,

Cna = (16N L 48N?%p2 4 16N3rirjrkgijk S+ AN3PA 4 2N4rirjrkrlgijmgmkl) (2;[)4.
(5.18)

When we substitute Eq. (5.18) in Eq. (5.16), we get the following trace relations,

which are an improvement over Eq. (5.14),

1!CL1 = tl"(p),
2ay = 1 —tr(p?), (5.19)
Blag = 1 —3tr(p?) +2tr(p?),

dlag = 1—6tr(p?) +8tr(p*) — 6tr(p') +3 (tr(p2)>2.

This concludes our introduction to Bloch parametrization. However, our job
does not end here. This parametrization provides us a set Qy from which we can

have a map to Dy, but, which » € R¥*~! actually lies in Qy is still a difficult
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5.2 The case with N = 3

problem to tackle. Most of the literature contain a convenient set of non-zero
components of r and correspondingly study different ‘cuts’ in the hyper ball
B(RY 2_1) of which Qp is a proper subset. Different types of such cuts exist
depending on the components of interest [67, 86, 87]. For the purpose of this thesis,
and the upcoming computations, it is imperative that we seek out some analytical
form of the eigenvalues as in the two-level case, viz., :;:7“7 which seems to be

lacking in the literature. So in the next sections, we develop the required analytical

form of some of the eigenvalues for the cases of N = 3 and N = 4 respectively.

5.2 The case with N =3

The density matrix p for N = 3 can be written as

pP3 =

(Is+V3r-T). (5.20)

W

The Bloch vector r is eight-dimensional, and the corresponding eight Generalized
Gell-Mann matrices can be expressed in the following way. The two diagonal

matrices are,

1 0 0 10 0
1
=10 -1 of, F2=%01 0| (5.21)
0 0 0 00 —2
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And the six off-diagonal ones are given as

01 0 0 0 1 00 0
F's=11 0 0/, Ts=10 0 0f, Ts=10 0 1],

000 100 010

0 i 0 0 0 i 0 0 o
Te=|—i 0 0, TIr=1]0 0 0| Ts=10 0 il- (5.22)

0 00 —i 00 0 —i 0

Now that we have declared all the necessary components, we are equipped to write

down the cubic characteristic polynomial whose roots A\ will give us the eigenvalues.

87,2

A straightforward computation yields, with r = T,

1
(1 —2ry) <r2 —3 (47“5 + 27y + 1))

(rarars + 16T7rs — raTeTs + r3r7s) (5.23)

+
/N
=3
[N}
|

EE
~__—
—
=
NN
+
=
~ o
~—— ~—
I
Sl
w

Comparing with Eq. (5.8) we get,

1/1 1 r
a3 = —3 <3 (1 —2ry) (r2 —3 (47‘% + 2ry + 1)) + <T2 — \%) (ri +7‘$>

(5.24)
—l (r37ars -+ reT7Ts — raTeTs + r3riTs) + AN + 7y (7“2 + 7“2) )
V3 V3 v
We re-write Eq. (5.23) with Eq. (5.24) the following way,
1 2
Mot A g =o0. (5.25)
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Reading with the following substitutions

—1+27az3 + 3r* = w,

v (5.26)
(w + vV —4rf + w2> = 0,
Eq. (5.25) has the following solutions
oL 2
P339 T 32w
1 1 +iy/3) 72 1—iv3)0
)\2: ——( n ) —|—< T ) , (527)
3 320 6.2
L] (1-iv3)r2  (1+iv3)0
T 3T 3.2hg 6.2k

To ensure the realness of the roots in Eq. (5.27), we must ensure the criteria below

r? 0
= — 2
250 2.2'57 (5:28)
which implies
0 =2"r. (5.29)

Now we get nice-looking roots for the case of N = 3 of the Bloch sphere represen-

tation as given under

1

/\1: §(1+2’l“),

do = ;(1—r), (5.30)
1

/\3: g(l—r)

In the following, we consider the N = 4 case.
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5.3 The case with N =14

We begin by writing down the density matrix using the GGM basis as

po=7 (Li+Vor-T). (5.31)

|

/15 .2
i=17i

nents enumerated and expressed as under. Firstly, the three diagonal matrices,

In this case, r is 15-dimensional, with r = . Also, I" has 15 compo-

0 00 10 0 0 100 0
Fl:0—100 F2:L0100F3:i0100
0 0 00 V3lo 0 —2 of VBloo1 o

0 0 00 00 0 0 000 -3
(5.32)

And the 12 off-diagonal matrices are,

01 00 0 010 0 0 01
1 000 0 00O 0 00O
F4_ aF5: 7F6_ )
00 0O 1 0 00 0000
00 0O 0 00O 1 000
0000 0 00O 0 00O
0010 0 0 01 0 00O
1—‘7_ 7F8: aF9: )
0100 0 00O 0 001
0 00O 01 00 0 010



5.3 The case with N =4

0 i 00 0 0 i 0 0 0 0 i
—i 0 0 0 0 0 0 O 0O 0 0 0
FIO - ;Fll — 7F12 - )
0O 0 00 -1 0 0 0 0 0 00
0 0 0 0 0 000 —i 0 0 0
0 0 00 0 0 00 00 0 O
0 0 i 0 0 0 0 i 00 0 O
I'is = Jhy = s = . (5.33)
0 -1 0 0 0 0 00 0 0 0 i
0 0 00 0 —1 0 0 00 —1 0

Using this basis, we can express the following

n+ A+ U T4 —iri rs —irn re —iri
T4 +1ir10 —r1 + % + % r7—irys rg —iry
r-I'= , (5.34)
s +1ir r7 +iri —2% + % r9 —iris
re +irig rg +iry rg +iris —@

the reduced density matrices can be found as,

pa=(L+rs-0)/2,
pp=(L+rp-o0)/2,

raj = V6 Tr (ojtrp (r-T)) ,

rpj = V6Tt (ojtra (r-T)) | (5.35)
4(v/2ry +13) 2(VBr1 — v/2ra + 23)

Ta=| 2v6(rs+1s) [, TB= 2v/6(ry + 19)
2v/6(r11 + r14) 2V/6(r10 + 15)

As it has been obvious by now, it will be quite difficult and frivolous to the current

discussion if we explicitly write down the coefficients a3 and a4 like we did in the case
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1
of the qutrit. Instead, we will note the following, that tr(p?) = N (1+ (N —1)r?).

This gives us upon substituting in Eq. (5.19) the following expression

s = N2_N1 (1-r), (5.36)

3
which for N =4 gives, ay = 3 (1 — r?). Setting this into the quartic characteristic

polynomial of Eq. (5.31), we get the following equation (ag = —a; = 1),

AN+ 2 (1=7?) 2\ = azh +as = 0. (5.37)

with the help of the Mathematica Software [88] the roots may be put in the

following form,

4N =1—a; —/3r2 —a? — s,
4hg =14 a1+ /3r? — o + ao,
403 =1+4a; —/3r2 — a2 + s, (5.38)
4Ag=1—0a;+/3r2 —a? — as,

where o and « are related to r, as and a4 as follows

a; =ryaz/2+1,

Qg = (24CL3 + 3T2 — ].)/Oél s

3 = \3/Oé5 + Oé4/<3\3/065) s
2
an = 2%a; — a5+ 3 (1 -1, (5.39)

as = ag +\/ag — af,
3

ag = 2%a4r? + 28&% — 25a4 (1 — 7“2) + (1 — 7“2) ,
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5.3 The case with N =4

ar = 2%ay/3 — Pas/3+ (1-12)". (5.40)

All the above ;s vanish in the limit » | 0, which corresponds to the maximally
mixed state p = I;/4 for which r = 0, a3 = 1/2%, and ay = 1/2%. The conditions

required for the positivity of the eigenvalues may be written as

2%ay =3(1—-7r%) >0,
2t a3 = ajas +1—-3r>>0, (5.41)

2% ay = 40’ (o — 3r?) + dajay — a5 + (3r* — 1) > 0.

The conditions required for the a;’s and the eigenvalues to be real may be written

as

az/24+1>0, (5.42)
a; <0, (5.43)
ag—a2>0, (5.44)
a2 <3r’+a; or af—3r*<ap,<3r’—al. (5.45)
Notice also that
=AM N+ A+ ) - 1)/3 (5.47)
a1 = /\2 -+ )\3 - )\1 - )\4 (548)
Ay = 2()\2 — )\3)2 - 2()\4 - )\1)2 (549)
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5.4 The nature of operators in Bloch representation

In his work, Beretta provided a unique formalism to understand the nature of
operators in Bloch representation for the case of N = 2 [7]. However, this work
has not been picked up by others and we felt the need for a similar formalism
for the analytical computation that will be needed in the following chapter. One
major obstacle could have been the unavailability of analytical forms of the roots
in the Bloch representation for N > 3. To remedy this, here we present Beretta’s
formalism, followed by our extension of the same in the case of N =3 and N =4

with the help of the solutions presented in Eq. (5.30) and (5.38), respectively.

5.4.1 N=2

For the two-level case, the roots are given as Ay = £ (1+7), and Ay = 5 (1 — ),
and A\; — Ao = r. We also know that if {\;} are the eigenvalues of a matrix A with
the corresponding eigenvectors denoted by {|A;)}, then using spectral theorem, we

can write the following,

N

F(A) = Z EF() [Ai)XAil (5.50)

i=1

where F' acts on real parameters . Also, we will use the completeness relation
SN AN = Iy. So, we can write the following steps beginning from Eq. (5.50)
for N =2 [7]

F(p) = F(M) M)Al + F(A2) [A2)( Aol

= CINFO) = WFOI B+ PO~ FO)lp, (551
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In deriving the last line of Eq. (5.51), Eq. (3.1) has been used. The benefit of this
formalism can be seen immediately, the operator F'(p) has two components. The
component involving I in the last line of Eq. (5.51) is of non-zero trace. Whereas,
the other component involving the Pauli operator remains traceless. Thus, for
analytical computations of operators such as pln(p) and their respective traces, we
find ourselves at an advantage. However, this is not easily generalizable to higher

dimensions. We will shortly see that below.

5.4.2 N=3

For the N = 3 case, we use Eq. (5.30) to see that 2A; — Ay — A3 = 27, and Ay = As.

As before, we begin with the spectral theorem and use the definition in Eq. (5.20)

F(ps) = F(A) [M )] + F(A2) [Aa)Aa| + F'(A3) [As)As]

_ 2)‘1_2);2_)‘3 [F'(A) [A )]+ F(A2) [Aa)XAa| + F'(A3) [As)As]]
_ ; (221 = Xs =) F(2) + (201 — Ao — ) F(X3) — (A + Xs) F(M)] s
+;DHM%J%M—F@Mma

= 3 [P0 + FO) + PO B+ S RF() = FOw) = FOw)l 7 T

(5.52)

5.4.3 N=4

We observe that there is various class of degeneracy when four eigenvalues are

involved. Either one is different, and all three are the same, or there is a pairwise
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degeneracy, or all four are the same. The first class is

/\4:)\3:)\1:(1—a1)/4, )\1§1/3
)\2 =1 —3)\1 = (1 +30[1)/4,

(5.53)
051:].—4>\1, —1/3§O&1§1

ap =202 = 2(1 — 4)\)?, r? =a?

which includes the one-dimensional pure states, a3 =1 (A = A3 = Ay =0, Ay = 1),
the maximally mixed state, oy = 0 (A\; = Ao = A3 = \y = 1/4), the maximally
mixed states with three-dimensional support, a3 = —1/3 (A} = A3 = Ay = 1/3,
A2 = 0), and the separable (—1/3 < ay < 1/3) and the entangled (1/3 < ay < 1)

Werner states.

A second class is

(5.54)

which includes the maximally mixed state, a; =0 (A = Ay = A3 = \y = 1/4), and
the maximally mixed states with two-dimensional support, a3 = £1 (A} = \y = 1/2,

Ay = A3 = 0).

Consider a function F'(z) such that x € R. Now to find the analytical expression
for the operator F'(p) in view of the degeneracy of the states in these two classes,

when Ay # A; [i.e., excluding the trivial case p = I,/4 for which F(p) = LF(1/4)]
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5.4 The nature of operators in Bloch representation

we may write (P; is the projector onto the degenerate subspace )

p = >\1P1 + )\QPQ, ]4 = P1 + Pg
1 N (5.55)

— _ L.
VD VA VS Ve

Py =14 — Py, Py
From this, we have

F(p) = F(\M)P1 + F(\2)Ps

_ MF (X)) — A F(A) F(\) — F(Xg)

T L+ SV (5.56)
_ (A= DFQ) — (e = DF() VBIF(M) = FQu)] |
40 — Xo) ! 4\ — Xo)

where for the first class, the eigenprojectors of p are such that Tr(P;) = 3 and
Tr(Py) = 1, whereas for the second class Tr(P;) = Tr(Py) = 2, and in the last
equation we used Eq. (5.1) for N = 4.

We can conjecture from above that given there exists a relation between the roots
of the density matrix py in N-level Bloch representation of the form f({\;}) = cr,
where ¢ is an arbitrary constant and f({\;}) is an algebraic relation between the

N eigenvalues, there exist some eigenvalues for which the following relation holds

F(pn) = ]1, [f: F(M} Iy +

=1

N(N —1)

N -er s f{FQ)Yr-T. (557)

Summary

To conclude, we have discussed the Bloch parametrization in the context of finite-
level density matrices. We have characterized the positivity of the eigenvalues by
imposing positivity on the coefficients of the characteristic polynomial. We have
further used trace invariants to simplify the general expressions for the coefficients

of the polynomial. Eventually, we solved the cubic for N = 3, and the quartic
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for N = 4 and present the analytic expressions of the roots. Finally, we analyzed
the general operator acting on these density matrices into zero trace and non-zero

trace contributions.
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6.1 No-signaling in nonlinear QM theroy

AVING discussed the implications of the application of the steepest
entropy ascent ansatz for the case of a single particle quantum system
with finite energy levels, we turn our attention to study the composition

of the same. In the preceding chapter 5 we presented the necessary mathematics
required to proceed with our discussion. This chapter will focus on a fundamental
issue that arises whenever one considers a nonlinear extension of quantum mechanics
and its application to composite systems. It has been noted in literature [72, 73]
that a nonlinear extension of quantum mechanics attracts the possibility of a faster-
than-light communication (signaling) between two noninteracting subsystems of a
composite. As a consequence, such nonlinear extensions of QM are dreaded and
nontrivial. Despite various attempts, a truly nonlinear extension of QM satisfying
the criteria of no-signaling as set by Gisin and colleagues has not been discussed
in the literature so far [36, 72, 74-76]. Considering the strong nonlinearity present
in the evolution under SEA as we saw in the preceding chapters 2, 3, and 4, it
is prudent that before committing to solving the composite system under SEA,
we must address the issue of signaling in the context of SEA, and show that such
an * EPR telephone line’ is precluded in the SEA theory by construction. We
begin by constructing the SEA equation of motion for a composite system. And
we will find the equation of motion for the reduced density matrices belonging
to the (noninteracting) subsystems of the composite. The case of the interacting
subsystems and further discussion about the nature of the SEA evolutions are

beyond the scope of this thesis.

6.1 No-signaling in nonlinear QM theroy

Weinberg proposed that despite the prevalent linearity in formalism, it has not been

concluded conclusively that QM is indeed a linear theory [71]. He also suggested
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Chapter 6 SEA in a Composite System

some nonlinear extensions in the Hamiltonian operators that could be experimen-
tally verified in some high-precision measurements. However, in the following year
in separate works, Gisin [72] and Polchinski [73] showed such a nonlinear extension
through operators will result in the establishment of supraluminal communication
(signaling), and one can have an ‘EPR telephone’ line, which strongly violates
causality. Here, we present Gisin’s Gedankenexperiment for completeness from Ref.

7).

6.1.1 Gisin’s Gedankenexperiment

In this thought experiment, there is a source sitting midway between two observers
Alice (A) and Bob (B). A pair of entangled qubits in a singlet state (Bell pair) is
emitted from the source (S) along the y-axis. A and B receive each part of the pair,
and when both of them have received parts of the same entangled pair, we say a
channel has been established. S is emitting such pairs continuously maintaining the
channel for a sufficiently long time so that particles are available to both observers
for multiple measurements. A has two detectors of the Stern-Gerlach type, one is
oriented along the z-axis, while the other is rotated 45° to it in the z — x plane,
respectively. Let us consider Alice’s system. To encode a message to be sent over
the channel, she is free to choose any one of the detectors and the corresponding
measurement outcomes would be her single-bit messages. Note that this local
operation by Alice does not change the reduced density matrix corresponding to
her subsystem.

Now on the side of Bob, we have a stream of spin-half particles one-half in
the up state and one-half in the down state in either of the detector basis of A
and the order depending on her choice of operation. However, just using local

linear operation B is unable to distinguish which basis the measurements were
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6.1 No-signaling in nonlinear QM theroy

made, and thus no communication takes place using linear Hamiltonians on the
maximally entangled channel. Gisin argued, instead, if Bob would incorporate a
non-bilinear Hamiltonian locally to act on his pair, he can in principle know which
detector setting was used by Alice in encoding her message. This decoding of
Alice’s message upon the nonlinear operation of the Hamiltonian by Bob creates a
scenario where the instantaneous state preparation due to Bell inequality violation

becomes a resource for communication. And signaling takes place.

6.1.2 No-signaling condition

In the language of quantum mechanics, signaling implies supraluminal communi-
cation. During the evolution of a composite system, Polchinski [73] argued that
the necessary and sufficient condition for no-signaling is when the observables
acting on a given noninteracting subsystem depend only on the reduced density
matrix of the same. However, Ferrero et. al., [74] showed that the probability
distribution and observables of a particular subsystem also have to be independent
of the effects of the remaining subsystems for signaling to be precluded. These
definitions stem from imposing causality arguments on the linear structure of QM.
Hence, a nonlinear theory by this logic should end up signaling ex vi termini.

As noted in [74], the no-signaling condition is imposed by requiring that in the
mutually non-interacting subsystems A and B, the evolution of the local observables
of A should only depend on its own reduced state. The SEA formalism, however,
allows us to take a less restrictive view [13]: the only requirement is that, if A and
B are non-interacting, the law of evolution must not allow local unitary operations
within B to affect the time evolution of local (reduced, marginal) state of A. Thus,
the condition ps = p/4, such as for the two different states p # pa ® pp and
P = pa® pp, does not require that dp, /dt = dp/, /dt, because local memory of

past interactions, i.e., existing entanglement and/or correlations, may well influence
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the local evolutions without violating no-signaling. This incorporates the idea that
(1) by studying the local evolutions we can disclose the existence of correlations, but
only of the type that can be classically communicated between the subsystems, and
(2) in the absence of interactions the nonlinear dynamics may produce the fading
away of correlations (spontaneous decoherence) but cannot create new correlations.

In linear QM, the system’s composition is specified by declaring: (1) the
Hilbert space structure as direct product H = ®J}/[: L H; of the subspaces of
the M component subsystems, and (2) the overall Hamiltonian operator H =
S H,®I5+V where H, (on H) is the local Hamiltonian of the J-th subsystem,
I5 the identity on the direct product H3 = Qx.; Hx of all the other subspaces,
and V (on H) is the interaction Hamiltonian. The linear law of evolution, p =
—i[H, p]/h, has a universal structure and entails the local evolutions through partial
tracing, p, = —i[H,, p;|/h — i Tr5([V, p])/h. Thus, we recover the universal law
p; = —i[H,, p;]/h for the local density operator p; = Tr5(p) if subsystem J does
not interact with the others (i.e., if V =1, ® V5).

As we can see, we cannot have a similar uniform structure for a fully nonlinear
QM, because the subdivision into subsystems must explicitly concur to the structure
of the dynamical law (see Ref. [16] for more on this). Each new partition of the
Hilbert space introduces new equations of motion. Thus one ends up paying a high
price for abandoning linearity in QM. But in result makes the theory compatible
with the compelling constraint that correlations should not build up and signaling
between subsystems should not occur other than per effect of the interaction
Hamiltonian V' through the standard Schrédinger term —i[H, p]/A in the evolution
law.

We also impose that the physical observables to be considered in composite
quantum dynamics analysis are the ‘local perception’ operators (on # ;). First

defined in [30] together with their ‘deviation from the local mean value’ operators
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and covariance functionals as [77],

(X), = Trz[(1; @ pp) X], (6.1)
AX)) = (X)) = 1, Tr[p,(X)]], (6.2)
(X, V)] = ;Tr[pJ{A(X)g, A, (6.3)

where p7 = Tr;(p). For a bipartite system AB, the local perception operators
(X): (on H4) and (X)P (on Hp) are the unique operators that for a given X on

H ap satisfy for all states p the identity
Tr[pa(X)}] = Te[(pa © pp) X] = Tr|ps(X)7 ], (6.4)

which shows that they represent all that A and B can say about the overall

A

5 can be viewed

observable X by classically sharing their local states. Operator (X)
as the projection onto H,4 of the operator X weighted by the local state pp of
subsystem B. It is a local observable for subsystem A which, however, depends
)]

on the overall state p and overall observable X. Its local mean value Tr[pa(X);

differs from the mean value Tr(pX) for the overall system AB, except when A and
B are uncorrelated (p = pa ® pp). It was dubbed ‘local perception’ because even
if B performs a local tomography and sends the measured pg to A by classical
communication, the most that A can measure locally about the overall observable

X is (X)4

0"

The overall energy and entropy of the composite system are locally perceived
within subsystem .J through the operators (H)J and (S(p)); defined on H; by
Eq. (6.1), respectively with X = H, the overall Hamiltonian, and X = S(p) =
—ksBIn(p), that we call the overall entropy operator, where Bln(z) denotes the

discontinuous function Bln(z) = In(x) for 0 < x <1 and Bln(0) = 0. It must be
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carefully observed that the ‘locally perceived overall entropy’ operator (S (p))g is
different from the ‘local entropy’ operator S(p;) = —ksB,In(p,). Not only that,
their mean values Tr{pJ(S(p))ﬂ = —ks Tr[(p; ® p7)Bln(p)] and Tr[p,;S(p,)] =
—kgs Tr[p; In(p,)] are also different. Only when p = p; ® py they are related

by Tr{pJ(S(p))ﬂ = Tr[p,S(p,)] + Tr[p7S(p7)] = —ks Tr[pIn(p)]. Likewise, for
the ‘locally perceived overall Hamiltonian’ operator (H )g we can make similar
statements. When the overall observable X is ‘separable for subsystem J’, in the
sense that X = X; ® I5 + I; ® X5 then, even if p # p; ® p7, the deviations and

covariances reduce to their local versions (special case),

A(Xﬂ = AX,; =X, = I, Tr[p,X,], (6.5)

(X, Y)z = Tr[p {AX,;, AY,}]/2. (6.6)

Now, to formalize the no-signaling definition following [13] as discussed above,
we impose that if A and B are non-interacting, a local unitary operation on B
should not affect the evolution of A. So, consider the composite AB in the state p,

where a local arbitrary unitary operation Ug on B (U;U 5 = Ip) changes p to
P =1 Up)p(Ia®UL). (6.7)
Using the partial cyclic properties of the partial trace,

Trp[(Ia @ Xp)Zag| = Trp[Zap(1a ® X5)],

Tra[([a ® XB)Zap(Ia @ Yp)| = X Tra(Zap)Ys,
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6.1 No-signaling in nonlinear QM theroy

we obtain the identities

p =Tra[(Ia @ UL) p' (I ® Up)] = U ppUs, (6.8)
pa = Trp[(Ia @ Up) p(Ia @ UL)] = Trp[(Ia @ ULUR) pl

= Trp[(la ® IB) p] = pa. (6.9)

This establishes that a local operation on B does not affect the local state p4 of A,
hence the usual idea [74] that for no-signaling it is sufficient that the dynamical
model implies evolutions of local observables that depend only on p4. However,
this must be noted that it is a sufficient condition and not a necessary one. We
prove next that not only the local reduced state p4 but also the local perception
operators (F(p))? of any well-defined nonlinear function F(p) of the overall state
(such as the function S(p) defined above for entropy) are not affected by local
operations on B according to Eq. (6.7). And since the SEA formalism is based on
such local perception operators, this is an important lemma in the proof that SEA

is no-signaling.

So, let us apply Eq. (6.7) to a function of F(p) as locally perceived by A
represented, according to definition Eq. (6.1), by its partial trace weighted with

respect to pp,

(F(p))" = Trp[(1a ® ps) F(p)]- (6.10)

A function of p is defined from its eigenvalue decomposition by F(p) = VF(D)VT =
> F(A) [A)XNs], where p = VDVT, D =Y, 0 15)(j|, and V = ¥, |A;)}(j]. Since

unitary transformations do not alter the eigenvalues,

F(p) = V'F(D)V' where V' = (I, ® Ug)V, (6.11)
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and therefore, using Eq. (6.8) in the last step, we obtain

(F(p)* = Trp(Is @ plg)F ()]
= Trp[(14 ® p) (In @ Up)VF(D)V (14 ® UL)]
= Trp[(I4 ® UbppUs) VF(D)V]

— Trp((Ls © ps) Fp)] = (F(p)*. (6.12)

This confirms that local operations on B do not affect the local perception operators
of A and, therefore, their proper use in nonlinear QM does not cause signaling

issues.

Considering all of this, we can formally write the no-signaling condition as

dpy J
o= (@) (6.13)

6.2 The composite EoM

We are now ready to introduce the last but not least essential ingredient of a
general composite-system nonlinear QM, namely, the system’s structure-dependent
expressions of the separate contribution of each subsystem to the dissipative term
of the equation of motion for the overall state p. As discussed above (and clearly
recognized in the early SEA literature [13, 16, 30]), the composite-system nonlinear
evolution should reflect explicitly the internal structure of the system, essentially
by declaring which subsystems are to be prevented from nonphysical effects such as
signaling, exchange of energy, or build-up of correlations between non-interacting
subsystems. In terms of the notation introduced above, the structure proposed

in [16, 30] for the dissipative term of the dynamics to be added to the usual
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Hamiltonian term is as follows

:_;[H7p]_Z{DpJ>pJ}®p77 (614)

J=1

where the ‘local dissipation operators’ Dp‘] (on H ;) may be nonlinear functions of the
local observables of J, the reduced state p;, and the local perception operators of
overall observables. For the dissipative term to preserve Tr(p), operators {Dg ) J}
must be traceless. To preserve Tr(pH) [and possibly other conserved properties
Tr(pCy)], operators {D‘p], pJ}(H)g land {D‘p], pJ}(C’k)Z] must also be traceless. The

rate of change of the overall system entropy s(p) = —kg Tr[pln(p)] is

dﬁ(tp) - JZ::l Te[{D), p, }(S(p));] (6.15)

and the local nonlinear evolution of subsystem J is obtained by partial tracing
over H, in general,
dp, i i

£ = —[H,.p,) = = Trs([Vop) = {D]. .} (6.16)

One can notice, for N = 1, Eq. (6.14) reduces to Eq. (2.55) [15, 30, 77]. Finally,
to introduce the SEA assumption in the spirit of the fourth law of thermody-
namics [17, 24|, one way is employing a variational principle. We first observe

from Eq. (6.15) that the rate of entropy change contributed by subsystem J

J

%, so there is no maximum

is directly proportional to the norm of operator D
entropy production rate because we can trivially increase it indefinitely by simple
multiplication of D/{ by a positive scalar. But we can fix that norm, and maximize
against the direction in operator space, to identify, for each given state p, the

operators DPJ that point in the direction of steepest entropy ascent. To this end,

to recover the original SEA formulation [30] let us maximize Eq. (6.15) subject
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to the conservation constraints Tr {{Dg,pj} (C’k)g] = 0 where C; =1, Uy, = H,
and Cy are other conserved properties (if any), together with the fixed weighted
norm constraints Tr [p ,(D] )2] = const (for more general SEA formulations in
terms of a different metric as necessary to incorporate Onsager reciprocity see
(17, 24]). Introducing Lagrange multipliers 37 and 7, for the conservation and
norm constraints, respectively, and imposing vanishing variational derivatives with
respect to operators Dg at fixed p and p,’s (derivation details in [16, 17], and in
chapter 2) yields

27,D; = (Bln(p)); + o8/ (Co);. (6.17)

where the multipliers 3] must solve the system of equations obtained by substituting

these maximizing expressions of the Dp‘] ’s into the conservation constraints,

>4 Tr[p,{(C0)), (Ci))}] = = Tx|p, {(BIn(p))), (CW)]}] . (6.18)

When €} = I and Cy = H determine the conserved properties and Eqs. (6.18)
are linearly independent, using Cramers’ rule, properties of determinants, and
definitions (6.2) and (6.3) we can compute 3/ associated with each local subsystem.
We first figure out the 7 by extending the definition used in Eq. (2.44) and rescale

it appropriately,

(6.19)
({7, (")) w(g{(e)’ (@)")
Upon expressing this, we can consider the 3 as under,
o L ({@ @me)}) w(z{e)’. @) (6.20)

I~

L Y@ Bue))) w(g{(@). ()

126



6.3 SEA in a two-qubit composite

s L[r(E{@ . ene))) wg{er @)

(g Bue)’)) u(g{@)@)))

After finding these s we are essentially done with the construction of EoM for

composite SEA. The local dissipation operators can be explicitly written as

(6.22)

6.3 SEA in a two-qubit composite

Gisin et. al., showed that although stochastic formalism using Lindbladian formal-
ism can accommodate nonlinearity while respecting no-signaling [36], the formalism
itself is riddled with many conceptual shortcomings (see Section (2.1) for a short
survey of the same). Fererro et. al., showed that a nonlinear formalism can be
accommodated only if the said characteristic exists in the time evolution of the
quantum system and not in the state space or in the structure of the operators
[74]. A few years later it was shown in Refs. [75, 76] that the least nonlinearity
that can be accepted in the QM formalism is if it respects the convex quasilinear
mapping. In this section, we write the SEA EoM for two-qubit composites in the
form of noninteracting separable, maximally-entangled, and Werner state cases. In

the process, we will see Eq. (6.13) is being respected [77].
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6.3.1 Noninteracting separable two-qubit composite

A. The case with p = ps ® pp:

Let us consider a bipartite system, whose Hilbert space is given as H = H4 ® Hp.

We call the system non-interacting if,

Co=(C)* @ Ip+ I, ®(Cy)5, (6.23)

and uncorrelated if p = ps ® pp so that,

S(p) =s(p)a @ Ip + s @s(p)s. (6.24)

We have used S(p) = Bln(p), and s(p); = B’ In(ps) [30]. Using these, we can

write the Eq. (6.14) as,

dp . A B
E——l[ﬂ,p]—{D aPA}@ﬂB_pA@){D 703}. (6.25)
Which implies [30],
dp\ _dpa . A
tI'B (dt) = E = —I[HA,pA] - {D ,pA}, (626)
dp\ dpp . B
trA (dt) = W = —I[HB,pB] — {D ,pB}. (627)

We see for the strong separability [13] considered here, each subsystem evolves
as if it were strictly isolated, and its evolution equation reduces to the form of
Eq. (2.53) for an indivisible system. The definition of no-signaling as in Eq. (6.13)

is also satisfied trivially.
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B. The case with p = 3, p;p’ ® p% for p; > 0:

Consider the following separable density matrix,

]_ _
Pm = (pa ® pp) + Tﬂfzx, (6.28)

achieved by introducing white noise to the separable state py ® pp and a mixing
parameter 0 < p < 1. We can use the general Bloch sphere representation for
N level systems using generators ({I';}) of the SU(N) group as given in previous
chapter, Eq.(5.1) [63, 64, 69]. For the case of a composite two-qubit system,
the density matrix can be represented by points in a 15-dimensional sphere of
unit radius. However, the mapping is not bijective, as not every point in such a
sphere represents a valid density matrix. Hence, treating the problem generally

is quite difficult. We restrict our attention to the mixed states resulting in the
1 —3r

1 nd

eigenvalues of the four-level system being of the form A\ = Ay =

B 1+ \/gr
4
of p,, in the following manner

A3 = \g as in Eq. (5.54) with a; = v/3. We can expand the expression

1

Pm = []4+M<(7“A’UA) Qb+ L@ (rp-op)+(ra-o4) @ (rp- UB))

1 (6.29)

The states as expressed above are contained in p, of Eq. (5.31) with eigenvalues
given by Eq. (5.38) if we consider r;3 = 0. We also consider pp = %1'2. So we make

the following assumptions to ease our computation. The non-zero components of the
A
V6’

, where, 74 ; is the i*" component of the qubit-Bloch vector of

Bloch vector giving real eigenvalues of the form considered here are r5 = rg =

o

the system A with 74 = urs. Without any loss in generality, for this computation,

and T11 = T14 =

we have considered 74 3 = 0. And we have rp = 0 by construction. This implies,

129



Chapter 6 SEA in a Composite System

73,1 77,24,2 TA . . .
we get r = 2? + 2? = ﬁ p and in extension p,, will have support on all

1
eigenvalues if » < — implying 74 < 1.

V3

As seen in the expression of Eq.(6.22), we need to compute various trace

functions as well as commutation and anti-commutation relations. To perform
this, we make use of the operator formalism introduced in Eq. (5.56) and find the

following relations. We e compute the operator In(p,,) as under,

In(py) = = [In(A1) + In(A2) + In(A3) + In(Ay)] L

1 =

(6.30)
_l’_

m(py) = [m(l_?’ﬂ)] L+ 2\\/[; [mG - \‘g;)] r.T.  (6.31)

In(Ag) +1In(A3) —In(Ag) — In(A\y)] 7 - T,

It is to be noted since p,, has support on all the eigenvalues, B = I;. From

Eq. (6.29), we have (pp,)a = %([24-?4 o 4), with T4 = pry, and (pm)p = %[2. The

J

operators (In(p,,))” are as given,

(ln(pm))A = tr2 (L @ (pm)2) In(pm)),

BRSNS S ) PR <1+FA>'T° (032
B R T A U Y A
(In(pm))? = tr1 (((om)1 ® L) In(pmn))
_ 1 1-7 e <1+FA> I (6.33)
~ 2 "M\ 16 R IIE )|
For the rest of the computation, let us use the following shorthand
1 -7 1+ 7a
A=1 A) 47 ( ) 34
n( G >—|—7‘An - (6.34)
1 -7 1 1474
Bl a1 ( > 6.35
n( 16 > * TA 1= Ta (68:35)

Using, Egs. (6.32)-(6.33) and expressions for reduced (p,,); we can get the following
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6.3 SEA in a two-qubit composite

expressions for locally perceived entropy operators (B ln(pm))‘] for each of the

subsystems

(o) a(BIn(pp))A = iA@ + iBm o, (6.36)
(0n)5(BIn(p))” = (A (6.37)

Now let us consider the Hamiltonian representative of noninteracting systems.

Denoting, H; = wyh; - 0, we can write

H=H,® L+ 5L Hp. (6.38)

We express the locally perceived Hamiltonians ((C)7 in the Section (6.2)) using

(7’6),4 = hA . ’l_"A as,

(H)* = wahy - 04, (6.39)

(H)? = wa(re)alk +wphp - op. (6.40)

Using these, we express the following trace relations which are required to compute

B/ from Egs. (6.19) - (6.21)

o ((pm)a(H)) = walre)a, (6.41)
o ((pm)p(H)P) = walre)a, (6.42)
tr((pm) a((H) 1)) = w3, (6.43)
tr((pm)s((H)7)?) = wh(re)a + i, (6.44)
(L B }) = B (6.45
(L2 B} = A (6.4
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tr((pm)a(Bn(pm))")

tr((pm) (B (o))

Il
!
i

(6.47)

I
[
>

(6.48)

Thereafter, putting these expressions into the Eqgs. (6.19) - (6.21), we get the follow-

ing expressions

01 = WAL (r)3), (6.49)
OF = w3, (6.50)
BA = w’%‘(A—B(r ) (6.51)
L7 904 e/A)> ‘
Br = ;%BA, (6.52)
B3t = w‘;gf;)A (A-B), (6.53)
B2 = 0. (6.54)

Let us write down the expressions for the anti-commutation relations as under

[, (pu)a} = wa(ha-oa+ (re)ab), (6.55)

{(H)37 (pm)B} = (wphp-op+wa(re)al). (6.56)

Therefore, using the multipliers in Egs. (6.49) - (6.54), the anti-commutations of
Egs. (6.55) - (6.56) into the expression for D’ in Eq. (6.17) to compute {DJ, (pm)J}.

However, since p,, is separable, we use D’ and we get after some tedious algebra,

] [(re)aha —Ta] - o4, (6.57)

{D”,(pm)s} = 0. (6.58)

Clearly, as is evident, here also, the reduced density dynamics in Eq. (6.58)
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6.3 SEA in a two-qubit composite

follow the form of Eq. (6.13). The EoM Eq. (6.57) gives rise to the solution of the
form in Eq. (3.17), which eventually mixes the subsystem A, and drives it towards
the local maximally mixed state, which in effect turns the composite towards the
global maximal mixed state. Moreover, as it is also evident, despite the ‘locally
perceived’” operators having contributions from the other subsystems, the overall
system dynamics does not contain that contribution. And signaling is prevented
[77]. To see whether the separate energy conservation conditions are satisfied, we
can show from straightforward computation, that this indeed, also holds. Similar

(L +7p-op) with rg3 =0 can be

computations involving ps = %12 and pp = %

carried out to reach the analogous conclusion, however, in this case, the nonzero

3 3
components of the Bloch vector will be ry = rg = B’l, and 719 = 115 = B2 The

V6 V6

case with p; = % (b + 7y - oy) with r;3 = 0 leads to eigenvalues of the composite

- 1 1
ﬁ,AQ:A3:4,andA4:W

B, a1 B2
components of the Bloch vector are ry = rg =

— =, T =rg = —4=,T190 =T15 = —=,
\/6 5 8 \/6 10 15 \/6

,’T
and ry; = ryy = A2 Carrying out similar analytical computation with eight

V6

nonzero Bloch vector components is quite non-trivial and is beyond the scope of

of the form \; = , where the nonzero

this thesis. In what follows we will consider the maximally mixed-state to complete

our discussion on finding SEA EoM for two-qubit composites.
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6.3.2 Noninteracting two-qubit mixed composite

Bell diagonal states [89, 90] with Bell vector b = (b, by, b.)

PPl = AL+ Y bi-oi®oi|,

i={z,y,2}

1
4
1+0,
1 0
=7 ;
by, — by

(6.59)

(6.60)

are identified in the notation of the previous chapter by the three parameters

Ollzbz

g = —2b,b,

r? = b?/3 where szbi—i-bfﬁng
40\ =1=b,—b,—b,,
409 =1—by + by, + b,
4X3=1+b, —b, + 0.,

ANy =1+b,+b,—b..

(6.61)

The states thus introduced can be used to classify a large class of states. These

include the standard Bell states for b, = b, = b, = —1, or —b, = b, = b, = 1. They

can be used to denote Werner states [84, 91] for b, = b, = b, = —w. These Bell

diagonal states represent maximally entangled pure composite (the Bell states),

can represent mixed entangled states (Werner states) and can represent states with

color noise with support only on two eigenbases of p4, thus providing a plethora of

flavor to choose from. Proving no-signaling for general Bell diagonal states thus
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becomes quite useful. Since p5" = p¥" = I,/2, we readily obtain
1
(S(pP" N = — 5 BLL, (6.62)
S Bell\\ B __ —}BLI
(S(™)" = ~ LBLL, (6.63)

where L equals the logarithm of the product of the nonzero eigenvalues of p®"

Y

e.g., for a non-singular p®°",

L = In(A; A As\a). (6.64)

Thus the expressions p2(S(p"))” can be evaluated as below,

1

(P a(Bln(p™"))* =~ BLL, (6.65)
1
(P*")p(BIn(p*")? = — JBLI. (6.66)

Now let us consider the Hamiltonian representative of noninteracting systems. We

find the locally perceived Hamiltonians (Cs)” as using Eq. (6.38),

(H)* = Hy, (6.67)

(H)® = Hp. (6.68)

Using these, we express the following trace relations which are required to compute

B} as

tr ((p"") a(H)") = 0, (6.69)
tr ((p™")5(H)?) = 0, (6.70)
tr (PP a(H))?) = w3, (6.71)

135



Chapter 6 SEA in a Composite System

tr ((p™")p((H)")?) = wi, (6.72)
r <<pB;H)A{(H)A,(Bln(pBe“))A}> _ o, (6.73)
tr <<pB;l)B{(H)B,(Bln(pBe“))B}> — 0, (6.74)
tr ((0")a(Bn(p)Y) =~ JBL, (6.75)
tr ((p7")p(BIn(p™"))P) = —;BL. (6.76)

Thereafter, putting these expressions into the defining Eqgs. (6.19-6.21), we get the

following expressions

Ot = Wi, (6.77)
0F = w3, (6.78)
gl = — ;BL, (6.79)
BE = — ;BL, (6.80)
By =0, (6.81)
pE = 0. (6.82)

Let us write down the expressions for the anti-commutation relations as under

{(H)Aa (PBQH)A} = wahy - o4, (6.83)

{(H)Ba (PBQH)B} = wphp - op. (6.84)

Therefore, using the multipliers in Egs. (6.77-6.82), the anti-commutations of

Egs. (6.83-6.84) into the expression for D7 in Eq. (6.17) to compute {DJ, (pBe“)J}.

Bell

However, since p®" is nonseparable, we use F” instead of D’ and we get after
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6.3 SEA in a two-qubit composite

some algebra,

{F4 (0" Ma) = 0, (6.85)

{72, (™"} = 0. (6.86)

These lead us to compute the expression for separate energy conservation as required
by no-signaling. We have D = {]:A, (pBe“)A} ® (p"Mp + (p°M)a ® {.7:3, (pBe“)B}.
For sub-system A using Eqs. (6.67-6.68), and (6.85-6.86),

(M*®1)D=0. (6.87)

The same is trivially true for subsystem B. We see that the solution for the
Bell diagonal states is non-dissipative and energy-conserving. Thus, the SEA is

no-signaling for all these cases [77].

Summary

In brief, we have discussed the concept of signaling in the framework of non-linearity
in quantum mechanics. We presented Gisin’s argument. We further discussed the
concept of no-signaling in the context of SEA and showed, how by relaxing and
broadening the definition of no-signaling, we can accommodate a larger class of
non-linear formalism than previously anticipated. We then used this definition to
construct the SEA EoM for a composite system. Finally, we considered the cases
of separable and non-separable two-qubit composites to write the EoM and show

that SEA respects no-signaling.
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I reappear by that sea,

with the soothing waves beneath me,
my shadows embed my new reality,

preapred for new learnings.






7.1 In conlcusion

HIS is where we conclude our story. We have explored some of the
intricacies of the SEA theory as the fourth law of thermodynamics
and its application to finite-level quantum systems. And now we must

present a summary of the key aspects that we have garnered from this discussion.
In this concluding chapter, we present our findings. Then we will comment on the
limitations of the thesis and present some ideas which represent the future scope

of this work.

7.1 In conlcusion

We have begun this thesis by discussing the motivation, foundation, and derivation
of the BSEA. There in chapter 2, we saw the underlying geometric structure of the
theory, and we understood the crucial role played by the concept of stability in
the formalism presented in this thesis. This chapter serves both as a review of the
literature and as an introduction to the tenets of SEA and thus plays an important

role in the development of the thesis.

In the vein of the above, one must also address the cases of mesoscopic system
evolution, and local entropy decrease observations. As it can be argued that while
the steepest entropy ascent formalism imposes a non-negative rate of entropy
generation, there are cases in nature that behave to the contrary, at least for a
short amount of time. So, it may be said that from this point of view, SEA is
not a general law of dynamics. However, it can be also argued that considering a
quantum observable - upon making a single measurement and we get an outcome,
which may be above or below the mean value. On repeated measurements on
an ensemble of identically prepared systems in the same state, we get statistics
of outcomes. The mean value may be positive, but some parts of the statistical

distribution of the outcomes may well be in the negative. In that state, that
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observable has some uncertainty. There is no surprise, of course, in any state
there are always observables that have some uncertainty. Now assume that this
observable happens to be such that its mean value is the rate of change of the
entropy functional. Since it is the meanvalue that is always positive, we can say
this is tantamount to claiming the rate of entropy production is always positive.
And thus the generality of SEA formalism can be retained.

Following this, chapter 3 presents the first finite-level quantum system, the
trivial case of a qubit or a two-level system to be studied under the SEA formalism.
We presented the exact analytical result due to Beretta in this chapter. However,
the important role played by this chapter lies in the development and application of
our key approximation scheme, the FLM method. We deployed FLM for the qubit
case and showed that depending on the choice of p, the scheme has the capacity to
provide a good approximation to the exact result. A justification for such a method
is that ;’s are not always rapidly changing, and it is sometimes more intriguing
to know the nature of a dynamics rather than an accurate depiction of the same.
FLM also simplifies SEA nonlinearity which makes the theory easily tractable and
the EoM looks more appealing. In this chapter, using Bloch representation we were
also able to demonstrate the concept of ‘steepest entropy ascent’ by showing the
rise of the trajectory in the state space over the entropy hill, which is an interesting
by-product of our analysis.

But aesthetics and ease of access aside, FLM must provide some real benefit over
the full numerical solution, otherwise one may justly question the point of using
such a scheme. To answer this, we present chapter 4 to the readers. where we see
FLM in its full glory. We find out that FLM is not only a fairly good approximation
for higher dimensional systems but also it is very reliable in representing the key
aspects of the dynamics. Our plots of comparison of probability amplitude for a

CTQW on a cycle graph with the full numerical solution are testaments to our
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claim. Not only that, a similar comparison of results for studying entropy and
entropy generation confirms that FLM works fairly well in initial and later times
during the dynamics too.

There is another set of conclusions to be made from this chapter. The use of CTQW
to model SEA evolution for a N—level system, or the modeling of decoherence in
CTQW using SEA has been a novel approach that opens up a plethora of research
avenues. We have for the first time used a first-principle approach to decoherence
in the study of CTQW. This leads to the introduction of SEA in the arena of
quantum computation and quantum information science. For a given 7, one can
now analytically study mixing in QW, without resorting to studying the limiting
value of the time-averaged decay of unitarily evolving amplitudes, or usage of
master equations of the Lindbladian type. We have seen through the dependence
of the diagonal elements of the Graph Hamiltonian in the FLM solution that the
decay to uniform distribution is highly reliant on the degree of the graph, which
implies dependence on the dimensionality of the lattice on which the walk is being
performed. Also, we see that 7 can be used to speed up the decay or to slow it
down, taking forever to decay in the case of large values. Our results show that by
properly tuning 7, one can swing between localization and complete delocalization.
Through the results of the chapters 3 and 4, we fulfill the first two objectives of

this thesis as discussed in the section 1.6.

Motivated by the success of FLM in studying single finite-level systems under
SEA evolution, it is only natural that we would want to extend our formalism to
study composite system evolution. However, as was the case presented by Beretta
in the case of a qubit, we wanted to figure out a way to analytically study the
simplest of composite, namely the two-qubit composite. The results in chapter 5
serve a very important purpose in this regard. We have attempted to find analytical

root expressions for Bloch representation for levels N = 3 and N = 4. These results
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are important on their own and can be used outside the context of this thesis. It
is very well understood how the analytical roots of N = 2 help us characterize the
Bloch vector representation of a qubit. Similarly, the geometry of Bloch vector
representation for a qutrit or a qudit with d = 4 had been studied in the literature,
but not having a parametric form for finding analytical roots was a handicap to
the analytical studies of the density matrices evolution in those cases. Our results
are well suited for that purpose. Consider the qudit case, for example. We have
found the roots in the form of three parameters (r, oy, and «as). By appropriately
tuning these, one can get all the roots of the case of a four-level system. This
result in particular opens up the possibility of numerous studies similar to what
the qubit case has done.

Our second contribution from this chapter is in finding the analytical expressions for
the behavior of F'(p). In our approach, we have exploited the degeneracy involved
in the roots. The formalism allows us to find the analytical expression for the real
functions be it p?, In(p), or exp(p) without being bothered about the eigenvector
expressions. Moreover, this formalism allows us to take analytical traces over these
functions, as the expressions are decomposed into trace-less and non-zero trace
parts, which can be easily computed. Besides, our formalism allows us to take
the products of the form pln(p) easily by exploiting the relations between the

generalized Gell-Mann matrices, which is an added advantage.

As discussed as objective 3 in the section 1.6, we do stumble upon a philosophical
problem of composite system studies via SEA. As it is oft-mentioned in the literature,
a general nonlinear theory of QM signals. Thus, it became imperative that we
address this issue with SEA and check that it does not signal. We thus scrutinize
the construction of the SEA EoM and especially Beretta composite SEA EoM
(BCSEA). We begin by understanding the conventional definition of no-signaling,

and then show that while it is necessary, this definition is not sufficient. We relax
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the no-signaling criteria to accommodate a larger class of nonlinear evolution
under which the local operation performed in one of the noninteracting subsystems
does not affect the outcome of the other. We show that by construction, SEA
is no-signaling. In the process, we cast some more light on the details of the
composite EoM formalism hitherto missing from the relevant literature. We then
proceed to consider some examples. Which are also novel results in regard to
SEA. We study the trivial separable case and a nontrivial one. We explicitly show
for the second case how via the application of perceived functionals and their
maximization, the separable states are locally driven to maximally mixed states.
We further considered the case of non-separable correlated composites. We present
some novel results concerning the use of Bell diagonal states under SEA and show
how they form non-dissipative limit cycles in the local evolution under SEA. Our
results conclusively show that SEA is no-signaling, and establish that SEA and
theories of the same class are no-signaling.

Thus we complete the three main objectives of this thesis and in the process as

by-products get some helpful results of the Bloch representation.

7.2 Limitations and future scope

Nothing is perfect, neither is this thesis. There are some serious limitations of this
thesis that have existed because of temporal bound or resource bound on our part.
It is also true, even if we addressed those issues some other thing would have been
mentioned in this section. So without further ado, we state the following.

Firstly, chapter 2 does not do service to the recent works in the SEA literature.
Especially the works by von Spakovsky and group is left undiscussed. The main
reason for such exclusion is that those works are beyond the scope of this thesis,

which is why we have mentioned them in section 1.2 but not discussed in detail.
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However, those results are quite intriguing, especially von Spaovsky’s work on the
typicality connection [19]. It is one of the future scope of this thesis, as the results
stated here can be applied to compare the outcomes of fluctuation theorem-related
results.

In chapter 3, we could have considered more cases and provided a non-equatorial
view of the evolution also. However, since Beretta’s original exact solution pertained
to that region, for ease of comparison, we also restrained ourselves in the same
domain.

In chapter 4, we believe we could have considered various graphs and not only
the cycle graph. In fact, we performed numerical analysis on the hypercube graph
and found similar results. We have retained those results from the discussion
because we think it would be prudent to present the same in the context of more
general graphs. This is also why we could not discuss mixing in detail here.

Our work in chapter 5 could have been augmented by some discussion on the
geometric aspects of the representations given that we already presented some in
the context of SEA interpretation. However, being restricted by time and resources,
we thought it would be better to leave the discussion of the roots and their relation
to the geometry of these higher-dimensional Bloch spheres for future work.

Finally, in chapter 6 we could not actually show the analytical results for the
composites and had to restrain ourselves within the discussion of the EoMs only.
We were seriously restricted by the limitation of time, and the computations of
chapters 5 along with the current one took more time than we had allotted ourselves
to. However, these works have presented us with the following ideas that we wish

to move forward with in detail study.

1. The application of SEA in CTQW has provided a gateway to the domain of

quantum information and computation sciences. The effect of decoherence
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in spatial search applications, mixing of walks, and application of SEA in

general random graphs such as Erdos-Renyi random graphs.

. Our results of Bloch representation can be applied to study the two-qubit
composite evolution analytically, along with studying the rich geometry
of those higher-dimensional objects under similar evolutions. We wish to

perform similar studies as we did in qubit evolution through the Bloch sphere.

. Finally, the EoM for the composite opens up a plethora of research opportu-
nities. As discussed above, we wish to analytically solve the two-qubit cases

using the EoMs derived in this thesis.

. We can use the BCSEA to solve many body QWs. And may also enquire

whether FLM or similar approximations can be used there as well.

. The BCSEA, along with mean-field approximations can be used to attempt
to find the equation for spontaneous decoherence in larger quantum systems,

for example, the Bose-Einstein condensate (BEC).
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