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Dissipation in fermionic two-body continuous-time quantum walk
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Quantum walks play a crucial role in quantum algorithms and computational problems. Many-body quantum
walks can reveal and exploit quantum correlations that are unavailable for single-walker cases. Studying quantum
walks under noise and dissipation, particularly in multiwalker systems, has significant implications. In this
context, we use a thermodynamically consistent formalism of dissipation modeling, namely the steepest entropy
ascent (SEA) formalism. We analyze two spinless fermionic continuous-time walkers on a one-dimensional
graph with tunable Hubbard and extended Hubbard-like interactions. By contrasting SEA-driven dynamics with
unitary evolution, we systematically investigate how interaction strengths modulate thermalization and entropy
production. Our findings highlight the relevance of the SEA formalism in modeling nonlinear dissipation in
many-body quantum systems and its implications for quantum thermalization.
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I. INTRODUCTION

Recent progress in quantum information processing, quan-
tum algorithms, quantum protocols, and their applications can
be manifested using different quantum walk models. First
introduced by Aharonov et al. [1] in 1993, and later utilized
as a search tool by Shenvi et al. [2] and Childs and Gold-
stone [3], the quantum walk algorithm has come a long way
since then. Childs [4] showed that quantum walks present a
universal model of quantum computation. Quantum walks are
involved in the modeling of relativistic dynamics [5] as well as
thermalization, including understanding eigenvalue thermal-
ization [6]. Duda et al. [7] studied diffusion and localization
on random lattices using quantum walks. Quantum walks can
route entanglement on a network [8], and they can be used in
quantum magnetometry [9].

Many-body physics can be explored via multiwalker quan-
tum walks (MWQWs). One of the first studies in MWQWs
was the two-walker (either entangled or otherwise) walks on
a line [10,11]. Childs et al. [12] showed that an MWQW
is also a universal model of quantum computation. Rohde
et al. [13] did a detailed study of the multiwalker formal-
ism on the graphs and their photonic implementation. Xue
and Sanders [14] showed that sharing a coin between two
walkers increases mutual information as swapping increases.
The MWQW is being used to model flexible teleportation
schemes for multiqubit systems [15]. Quantum foundation
problems, such as the study of nonlocality and local realism
models, have been investigated using multiwalker quantum
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walks [16]. Recently, quantum walks were implemented on an
IBM quantum computer [17]. Jiao et al. [18] showed that an
MWQW with photons on a two-dimensional lattice is used to
simulate various genuine quantum phenomena. An MWQW
has been used to mimic the effects of gravitationally induced
entanglement [19]. Recently, the authors of Ref. [20] analyzed
collaborative quantum walks with more than two walkers.
Two-walker quantum walks have been used for the quantum
color image encryption protocol [21].

Dissipation in quantum walks can result from experimental
noise or environmental interactions, altering system behavior.
Dissipative studies follow two main approaches. The first is
the widely used Lindbladian formalism, which ensures com-
plete positivity and trace preservation [22,23]. Here, the sys-
tem weakly couples to the environment while the combined
system evolves unitarily. Under the Markovian assumption,
the system-environment state starts as a product state, leading
to an irreversible yet thermodynamically consistent evolution
based on specific environmental models—a “bottom-up” ap-
proach [24]. Most dissipative quantum walk studies use this
approach via the Gorini-Kossakowski-Lindblad-Sudarshan
(GKLS) master equation [25,26]. Kendon and Tregenna [27]
first explored decoherence in quantum walks under this frame-
work (see [28,29] for reviews). Fedichkin et al. [30] analyzed
decoherence via mixing, while Candeloro et al. [31] studied
continuous-time quantum walks (CTQWs) under quadratic
Hamiltonian perturbations. Garnerone [32] investigated ther-
modynamic properties, and Pegoraro et al. [33] recently
examined conditioned losses in two-photon walks.

We propose to adopt a “top-down” approach, starting with
model dynamics in the density operator formalism, to derive a
thermodynamically consistent master equation. This approach
derives a general, thermodynamically consistent master equa-
tion where the Gibbs state is the globally stable equilibrium
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TABLE I. Major interaction regimes and corresponding condi-
tions on αi’s in Eq. (31) for the two walkers.

Case α1 α2 α3 α4

Full interaction (FI)
(All equal)

�=0 �=0 �=0 �=0

Hubbard
interaction (HI)

�=0 =0 =0 =0

Correlated hopping
interaction (CHI)

�=0 =0 =0 �=0

Full interaction with
fixed hopping
(FIFH)

�=0 �=0 and = α3 �=0 and = α2 �=0

(per the second law of thermodynamics). This leads to a non-
linear dynamical equation without exotic effects like signaling
[24]. A key candidate for this approach is the steepest entropy
ascent (SEA) formalism, proposed by Beretta et al. [34] to
unify thermodynamics and mechanics [35]. SEA evolution
for composite systems was later introduced [36], and Beretta
demonstrated its thermodynamic consistency and applicabil-
ity to general quantum dissipation [37–40]. He also proposed
a generalized SEA framework similar to other dissipative
models [41], eventually arguing that SEA could be considered
the fourth law of thermodynamics [42]. Beyond pedagogical
advances, SEA has seen growing applications. It has been
used for temperature and magnetization modeling in low-
temperature systems [43] and for predicting entanglement loss
in controlled phase gates [44]. One of the authors applied SEA
to study dissipation in a CTQW, and they developed an ap-
proximate analytical method using fixed Lagrange multipliers
(FLMs) [45]. SEA has also been used to model decoherence
in superconducting quantum processors [46], dissipative dy-
namics in two-qubit gates [47], and nonlocal correlation loss,
with Damian et al. [48] showing strong agreement between
SEA predictions and experiments. Despite its nonlinearity,
SEA evolution does not lead to signaling [24].

From the discussion in the preceding paragraphs, we con-
clude that the important problem of dissipation in MWQWs
has not been explored through the SEA framework. In this
paper, we study the problem of dissipation in two-walker
CTQWs under the SEA evolution. One of the major advan-
tages of using SEA lies in the fact that one does not need
to worry about particular modeling of the environment—the
relaxation dynamics will continue to drive the system towards
the available maximal entropic state via a path of steepest
entropy production. We study two fermionic particles walking
on a ring [one-dimensional (1D) lattice with periodic bound-
aries], and we analyze the evolution of the dissipative walk.
Additionally, we examine the effect of SEA on an MWQW
across different interaction regimes (Table I), considering
Hubbard and extended Hubbard-like interactions with varying
strengths.

This paper is organized as follows. In Sec. II, we introduce
the necessary theoretical background for this work. We intro-
duce the continuous-time quantum walker for two walkers in
Sec. II A, and in Sec. II B we do the same for the steepest

FIG. 1. A schematic of the two-walker model on a ring graph of
N vertices indexed from 0 to N − 1. The two-walker wave function is
an element of the joint Hilbert space H = HA ⊗ HB. Initially, walk-
ers A and B are localized in distinct regions, allowing the composite
state to be written as a product state. As correlations develop during
evolution, the system is described by a composite antisymmetric
density matrix (ρa). The reduced density matrix ρJ represents the
Jth walker.

entropy ascent formalism. In Sec. III, we discuss the various
regimes of interaction under consideration, and we present the
results of our analysis. We discuss the results in Sec. IV and
present our concluding remarks.

II. THEORETICAL PRELIMINARIES

A. The two-walker continuous-time quantum walk

The single quantum walker can be modeled on an under-
lying graph. We begin by considering an undirected graph G
with no loops and multiple edges. G has a vertex set V with
N vertices and an edge set E defined as the set of edges that
exist between the vertices. We associate a degree matrix D,
i.e., a diagonal matrix with an ith entry denoting the degree
(number of edges incident on a given vertex) of the ith vertex
(see Fig. 1). Using an adjacency matrix A defined as

A : ai j =
{

1 if ei j ∈ E,

0 otherwise, (1)

we define the Laplacian L on G using the relation L = D −
A. We can write the following equation of motion for a
continuous-time quantum walker [45]:

dρ

dt
= − i

h̄
[H, ρ] = − i

h̄
[μL, ρ]. (2)

Using the computational basis, we express ρ = ∑
i pi|i〉〈i|,

where pi is the probability that the walker is at vi. We notice
that the effective Hamiltonian describing the evolution can be
written as H = μL, where μ is a square matrix of size N that
contains the hopping-probability and on-site potential infor-
mation. We can express the same Hamiltonian in tight-binding
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form as

L =
N−1∑
i=0

di|i〉〈i| −
∑
〈i, j〉

(|i〉〈 j| + | j〉〈i|)

⇒ H =
N−1∑
i=0

diμii|i〉〈i| −
∑
〈i, j〉

μi j (|i〉〈 j| + | j〉〈i|)

=
N−1∑
i=0

εi|i〉〈i| − t
∑
〈i, j〉

(|i〉〈 j| + | j〉〈i|).

(3)

We have used hopping probability μi j to denote the transition
probability per unit time between two vertices vi and v j (with
an additional assumption of uniform transition probability,
μi j = μ), di = 2 is the degree of vertex vi, and μii = μ for all
i for our purposes. Additionally, in our case of the ring graph,
the on-site potential term εi = di = 2 for all i. For simplicity,
the nearest-neighbor hopping term t is considered equal to
μ = 1 for all pairs 〈i, j〉. The solution to Eq. (2) is given by

ρ(t ) ≡ ρt = Utρ
0U†

t , (4)

with Ut = exp(−iHt ) (in this paper, we consider h̄ = 1).
We now do the straightforward extension of the above for-

malism to include the two-walker quantum walk. We consider
walkers A and B walking on the same graph G. The walk
will be governed by a general Hamiltonian, which includes a
noninteracting and an interacting part in the following fashion:

H = Hfree + Hint, (5)

where Hfree = HA ⊗ IB + IA ⊗ HB, and HJ , IJ act on subsys-
tem J for J ∈ A, B. The term Hint depends on the model of
choice and will be discussed in Sec. III. We consider two in-
distinguishable walkers with an antisymmetric wave function
defined in the computational basis as

|ψi j〉 = 1√
2

(|i j〉 − | ji〉), (6)

and the corresponding density matrix as ρi j = |ψi j〉〈ψi j |. We
can also define projectors that will project onto the antisym-
metric subspace of the tensor-product Hilbert space HA ⊗ HB.
These projectors can be written in terms of swap operators
Sρi j = ρ ji as

Pa = 1
2 (I − S). (7)

Using these projectors, the usual Scrödinger–von Neumann
equation of motion can be written as

Pa
dρ

dt
Pa = −i[Ha, ρa], (8)

where Ha = PaHPa and ρa = PaρPa. Under this scheme, the
unitary equation of motion of the density matrix can be written
as [analogous to Eq. (2)]

dρa

dt
= −i[Ha, ρa]. (9)

This equation provides a guarantee that the system will be
constrained to the relevant antisymmetric subspace through-

out its evolution. The solution can be similarly written as

ρt
a = Utρ

0
aU†

t , (10)

with Ut = exp(−iHat ). The joint probability distribution
(JPD) of the walkers at time t is given by this P t

a(m, n), and it
can be found as (for simultaneous detection at vertices or sites
m and n)

P t
a(m, n) = 〈mn|ABρt

a|mn〉AB. (11)

The marginal probability of finding each of the Jth walkers at
time t and at site m can be given by (J denotes the comple-
mentary system to J)

pt
a(m) = 〈m|J trJ

(
ρt

a

)|m〉J . (12)

We have used trJ (ρ) to denote partial trace over the subsystem
J .

B. Steepest entropy ascent formalism

1. Single-component equation

We present the theoretical background required for the
steepest entropy ascent (SEA) formalism. However, for a de-
tailed derivation and motivation for the SEA formalism, we
direct the reader to Refs. [41,45]. In the SEA formalism, the
local entropy production is maximized in tandem with various
conservation criteria. We begin by elaborating on the usage of
the term “top-down” from the Introduction.

The SEA dynamics describes the relaxation of a system
from far-off equilibrium towards equilibrium. The Gibbs state
is the stable equilibrium state from the canonical second law
of thermodynamics [35]. A general dynamics that maximizes
entropy production to reach such an equilibrium is essentially
nonlinear [49,50]. This scheme also stands out as it considers
a seldom confronted thermodynamic consistency criterion,
namely the stability of the Gibbs state. Naturally, SEA be-
comes a “top-down” approach, as it does not build up from
a Schrödinger equation and derives the equation of motion
(EOM) using the desiderata as follows. Beretta formulated the
original version of SEA in Refs. [34,36,38,39,41], and hence
we will call it the Beretta SEA (BSEA) EOM. In Ref. [45], one
of the authors has derived the BSEA EOM (see Appendixes A
and B therein). We will begin with the generic feature of the
BSEA EOM in the Ginzburg-Landau form [51],

dρ

dt
= −i[H, ρ] − {D, ρ}, (13)

where we have introduced the dissipation operator D in the
anticommutator on the right-hand side. In the absence of an
external reservoir, the isolated system evolves in the direction
of maximum local entropy production. As a consequence, the
state vector evolves nonunitarily by strictly adhering to the
constraints of the motion, while the trajectory moves more and
more towards the global stable equilibrium state of the given
context. Equation (13) is a compactified form of BSEA. The
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full expression for D is given below [41,45]:

dρ

dt
+ i[H, ρ]

= − 1

τ

∣∣∣∣∣∣∣∣∣∣∣

ρB ln(ρ) 1
2 {C1, ρ} 1

2 {C2, ρ}
tr
(

ρ

2 {C1, B ln(ρ)}) tr
(
ρC2

1

)
tr
(

ρ

2 {C1,C2}
)

tr
(

ρ

2 {C2, B ln(ρ)}) tr
(

ρ

2 {C2,C1}
)

tr
(
ρC2

2

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

tr
(

ρ

2 {C1,C1}
)

tr
(

ρ

2 {C1,C2}
)

tr
(

ρ

2 {C2,C1}
)

tr
(

ρ

2 {C2,C2}
)
∣∣∣∣∣∣∣

.

(14)

In the above equation, τ denotes the relaxation time, Ci is
the operator associated with the system conservation and
constraint, e.g., for a single particle C1 is the I operator for
probability conservation, and C2 is the Hamiltonian opera-
tor H for energy conservation. B is an idempotent operator,
projecting ln(ρ) on the kernel of ρ, making it analytically
well-defined. B can be formally written as B = Pker(ρ). We cast
Eq. (14) in the following convenient form:

dρ

dt
= −i[H, ρ] − 1

2τ

[
{B ln(ρ), ρ} +

∑
i

(−1)iβi{Ci, ρ}
]
.

(15)

Here, the parameters βi are defined explicitly in Eq. (14), and,
in general, they are nonlinear functionals of ρ, which vary
in time during the evolution. In the presence of the reservoir,
β2 associated with H can be interpreted as the inverse tem-
perature and is solely determined by the reservoir [48]. In
some cases, as discussed in [45], these βi’s can be consid-
ered constant, and that consideration reduces the nonlinearity
present in Eq. (15), especially in the low-τ region. We define
the operator D,

D = 1

2τ

[
B ln(ρ) +

∑
i

(−1)iβiCi

]
. (16)

We use D to write Eq. (15) as Eq. (13). This completes
the short introduction of the single-component BSEA EOM.
However, for our purposes, we need to use the two-component
BSEA EOM.

2. The two-component equation

Before proceeding with the two-component BSEA EOM,
we need to address the subtleties of using a nonlinear evolu-
tion to describe many-body dynamics. In interacting systems
the interaction energy, and in correlated systems the mutual
entropy (as defined later), do not have a clear division between
system components [36,39]. Meanwhile, SEA dynamics max-
imizes local entropy production. Without a proper framework
to define the local contribution of these quantities, implement-
ing SEA evolution becomes challenging. In this regard, we use
the “local-perception” operators (LPOs) [24,36,38,39] for the
following reasons:

(i) Unlike the linear Scrödinger–von Neumann formalism,
which retains the same form of EOM for both composite and

single systems, the BSEA EOM, being nonlinear, needs to
respect the structure of the composite to avoid unphysical
interactions [24].

(ii) The LPOs, constructed via a weighted projection of
the composite operator onto local Hilbert spaces [Eq. (17)],
are no-signaling, as their expectation values remain un-
changed under local unitary operations in other subsystems
[24].

We consider the dynamical equation of composite systems
in the following manner. Consider the Hilbert space of the N-
partite composite system of the form H1 ⊗ H2 ⊗ · · · ⊗ HN .
The SEA formalism is built on the “locally” steepest entropy
ascent, maximizing the locally “perceived” entropy and con-
serving the corresponding “perceived” constraint functionals
[24,36,39]. As a result, each of these local subsystems under-
goes SEA treatment. The general Hamiltonian has the form
H = ∑

J HJ ⊗ IJ + V , where V is the interaction term, HJ

is the local Hamiltonian of the Jth subsystem in HJ , and
IJ ∈ HJ = ⊗

K �=J HK . The reduced density matrices of the

Jth component are ρJ = trJ (ρ). The LPO, as originally in-
troduced in Ref. [36] and recently reintroduced in the context
of no-signaling and quantum information tasks in Ref. [24], is
defined as

(Ci )
J = trJ ((IJ ⊗ ρJ )Ci ). (17)

We immediately notice that for a two-component system, AB,
the LPOs defined in subsystems A and B are unique and
express the limitation of the information that A and B can have
about the overall operator X via classical communication.
This can be expressed as

Tr
[
ρA(X )A

ρ

] = Tr[(ρA ⊗ ρB)X ] = Tr
[
ρB(X )B

ρ

]
. (18)

We define the locally perceived entropy operator (LPEO) as

(S(ρ))A = trB((I2 ⊗ ρB)S(ρ)),

(S(ρ))B = trA((ρA ⊗ I2)S(ρ)),

S(ρ) = −kBB ln(ρ) with B ln(x) =
{

0 for x � 0.

ln(x) for x > 0.

(19)

We impose another salient feature of the evolution to ensure
SEA is trace-preserving (TP), i.e., the part in the anticom-
mutator on the right-hand side in Eq. (13) must be traceless
(similar to Lindblad evolution). We can extend this to the
case of a many-body SEA equation and demand that the local
dissipative operators DJ be such that {DJ , ρJ} is traceless. We
can write the many-body BSEA EOM (for M constituents) as
[24,36–39]

dρ

dt
= −i[H, ρ] −

M∑
J=1

{DJ , ρJ} ⊗ ρJ . (20)

We note that DJ operates on HJ , and is nonlinear. Also, if one
sets M = 1, we can recover Eq. (13). The expression for DJ
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can be written as (from the Appendix) [24,36]

{DJ , ρJ} = 1

2τJ

∣∣∣∣∣∣∣∣∣∣∣

ρJ (B ln(ρ))J 1
2 {(C1)J , ρJ} 1

2 {(C2)J , ρJ}
tr
(

ρJ

2 {(C1)J , (B ln(ρ))J}) tr
(
ρJ (C1)2

J

)
tr
(

ρJ

2 {(C1)J , (C2)J}
)

tr
(

ρJ

2 {(C2)J , (B ln(ρ))J}) tr
(

ρJ

2 {(C2)J , (C1)J}
)

tr
(
ρJ (C2)2

J

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

tr
(

ρJ

2 {(C1)J , (C1)J}
)

tr
(

ρJ

2 {(C1)J , (C2)J}
)

tr
(

ρJ

2 {(C2)J , (C1)J}
)

tr
(

ρJ

2 {(C2)J , (C2)J}
)
∣∣∣∣∣∣∣

. (21)

We note that the local Lagrange multipliers can be computed as in (from the Appendix)

�J =
∣∣∣∣∣tr

(
ρJ

2 {(C1)J , (C1)J}
)

tr
(

ρJ

2 {(C1)J , (C2)J}
)

tr
(

ρJ

2 {(C2)J , (C1)J}
)

tr
(

ρJ

2 {(C2)J , (C2)J}
)
∣∣∣∣∣, (22)

and then

βJ
1 = 1

�J

∣∣∣∣∣tr
(

ρJ

2 {(C1)J , (B ln(ρ))J}) tr
(

ρJ

2 {(C1)J , (C2)J}
)

tr
(

ρJ

2 {(C2)J , (B ln(ρ))J}) tr
(

ρJ

2 {(C2)J , (C2)J}
)
∣∣∣∣∣, (23)

βJ
2 = 1

�J

∣∣∣∣∣tr
(

ρJ

2 {(C1)J , (B ln(ρ))J}) tr
(

ρJ

2 {(C1)J , (C1)J}
)

tr
(

ρJ

2 {(C2)J , (B ln(ρ))J}) tr
(

ρJ

2 {(C2)J , (C1)J}
)
∣∣∣∣∣. (24)

Thus we can write the following simplified expression for the
local SEA dissipation operator:

DJ = 1

2τJ

(
(B ln(ρ))J +

∑
i

(−1)iβJ
i (Ci )J

)
. (25)

Taking the partial trace over Eq. (20), we get the model equa-
tion of dissipation for the subsystem J as [24,39]

dρJ

dt
= −i[HJ , ρJ ] − trJ ([V , ρ]) − {DJ , ρJ}. (26)

Now, as a final note, to account for the particle symmetries,
we must include the projector just as we did in Eq. (8). This
implies projecting the overall Hilbert space and its operators
to the subspace as required, and then computing the “new”
local operators to implement the many-body BSEA EOM for
the particular symmetry

dρa

dt
= −i[Ha, ρa] −

M∑
J=1

{DJ (ρa), (ρa)J} ⊗ (ρa)J . (27)

III. TWO WALKERS UNDER SEA

Before presenting our results, we elaborate on the structure
of Hint. We start with a more general description, and then we
allow modifications according to our requirements. A general
form of interaction can be written as

H(int, gen) = HA ⊗ HB, (28)

which upon expansion, using the Hamiltonian as in Eq. (3),
gives rise to the following expression (the indices i, j belong
to the walker A, while k, 	 belong to the walker B, and the
hopping strengths t, s and on-site potentials εi, ωk belong to A

and B, respectively):

H(int,gen) =
∑
i,k

εiωk|ik〉〈ik| − t
∑
〈i, j〉,k

ωk (|ik〉〈 jk| + | jk〉〈ik|)

− s
∑

i,〈k,	〉
εi(|ik〉〈i	| + |i	〉〈ik|)

+ ts
∑

〈i, j〉,〈k,	〉
(|ik〉〈 j	| + |i	〉〈 jk| + H.c.). (29)

We will also expand the term Hfree as given below,

Hfree = HA ⊗ IB + IA ⊗ HB

=
∑
i,k

(εi + ωk )|ik〉〈ik| − t
∑
〈i, j〉,k

(|ik〉〈 jk| + | jk〉〈ik|)

− s
∑

i,〈k,	〉
(|ik〉〈i	| + |i	〉〈ik|). (30)

Combining Eqs. (29) and (30), we get the total Hamiltonian
as

Htotal =
∑
i,k

(εi + ωk + α1εiωk )|ik〉〈ik|

− t
∑
〈i, j〉,k

(1 + α2ωk )(|ik〉〈 jk| + | jk〉〈ik|)

− s
∑

i,〈k,	〉
(1 + α3εi)(|ik〉〈i	| + |i	〉〈ik|)

+ α4ts
∑

〈i, j〉,〈k,	〉
(|ik〉〈 j	| + |i	〉〈 jk| + H.c.), (31)

where we introduce these scalars αi’s to tune each component
of the above expression to include various levels of interac-
tion.

We proceed by computing the projection of this Hamil-
tonian of Eq. (31) to the antisymmetric subspace as we are
interested in the fermionic-type walkers. We get [using Pa as
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defined in Eq. (7)]

Htotal,a = PaHtotalPa. (32)

Based on the different settings for the parameters (αi’s), we
identify four major cases for our study. We compare Eqs. (29)
and (30) and note that the terms with α2 and α3 are already
present in Hfree, which is there to modify the weight of condi-
tional hopping terms in the Hamiltonian. On the other hand,
the term associated with α1 modifies the on-site contribution,
so the real “interaction” term is due to α4. Based on these
observations, we find four regimes of interaction. The first
case is when all the αi’s are nonzero and equal, which we
call “full interaction” (FI). The case when only α1 is nonzero
is called the “Hubbard” (HI) regime (because of the spinless
antisymmetric consideration, there are no true Hubbard in-
teractions). For only nonzero values of α1 and α4, we get a
“correlated hopping interaction” (CHI) regime. And finally,
we consider fixed conditional hopping terms (α2 = α3) with
α1 and α4 varying equally, which we call “full interaction with
fixed hopping” (FIFH). The chosen values are within three
orders of magnitude, so weak interaction implies the value
0.1, medium is 1, and strong is 10. t and s are considered to
be 1. We summarize this classification in Table I.

We will now study the dynamics of the two walkers in each
case. We study the evolution in unitless time t/τ , where τ is
the average relaxation time defined as τ = (τA + τB)/2. We
first begin by understanding the unitary walk features in the
case of various degrees of interaction. Our initial states are
perturbed entangled states. We begin by having a “singlet”
configuration (for the initial position of each walker being at
either the ith or jth site of the ring) of the form

|ψ (i, j)〉 = 1√
2

(|i〉A| j〉B − | j〉A|i〉B),

which is then perturbed by an amount ε ∈ [0, 1) by a white
noise (uniformly distributed over all the basis states spanning
the antisymmetric subspace of Ha = HA ∧ HB) to generate
mixed state as under

ρ0 = ε|ψ (i, j)〉〈ψ (i, j)| + (1 − ε)Ia. (33)

We use ε = 0.95 to produce slight perturbation in the initial
state. This is by no means the only way to create mixed states;
there are other approaches as well [48]. However, studying the
effects of such methods is beyond the scope of this work.

A reliable measure of two-walker evolution can be ob-
tained by tracking the evolution of the joint probability
distribution (JPD). We compute the JPD via Eq. (11). In Fig. 2,
we show how the JPD of the two-walker evolves without
interaction. We present two time slices to show the difference
in evolution; one is at t/τ = 0 [panels (a) and (b)] and the
other is at t/τ = 30 [panels (c) and (d)] in Fig. 2. The JPD
evolves from two sharp peaks at (5,6) and (6,5) at t/τ = 0 and
spreads more under the SEA dissipation, in contrast to contin-
uously oscillating unitary evolution. The underlying unitary
feature is not totally lost during the SEA evolution [see the
comparison between panels (c) and (d) in Fig. 2], just that it is
more smeared. In Fig. 3, where we are in the full interaction
range (Table I) with αi = 10 for all i’s, we see that the SEA
evolution [panel (c) of Fig. 3] has fewer probability peaks
when compared to the unitary one [panel (d) of Fig. 3]. This
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FIG. 2. Joint probability distribution of two-walker evolution on
a ring with 11 nodes (indexed from zero). The walkers evolve without
interaction (αi = 0 ∀ i). Panels (a) and (b) show the initial JPD, while
panels (c) and (d) depict the JPD at t/τ = 30. SEA evolution is
shown in (a) and (c), and unitary evolution in (b) and (d). Color bars
next to each panel indicate the corresponding probability values.

can be seen by counting the number of magenta blocks in the
respective panels.

This evolution of the JPD is reflected in the time evolu-
tion of the marginal probability of the walkers. We show the
marginal probability of the walkers in Fig. 4. As expected,
the early-time marginal evolution under unitarity [panel (a) of
Fig. 4] shows similar oscillations to the marginal evolution
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FIG. 3. Joint probability distribution of two-walker evolution
(see Table I) on a ring with 11 nodes (indexed from zero). The walk-
ers experience strong, full interaction (αi = 10 ∀ i). Panels (a) and
(b) show the initial JPD, while panels (c) and (d) depict the JPD
at t/τ = 30. SEA evolution is shown in (a) and (c), and unitary
evolution in (b) and (d). Color bars next to each panel indicate the
corresponding probability values.
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FIG. 4. Marginal probability of walker A on a ring graph with 11 sites, evolving under a Hamiltonian with no interaction. Panels
(a)–(c) depict unitary evolution, while panels (d)–(f) show SEA evolution. Panels (a) and (e) compare the initial evolution of the marginal
probability distribution under unitary and SEA dynamics, respectively. Panels (b) and (f) show the late-time evolution for the same cases. The
large color bars on the left of each panel indicate probability values, while the smaller ones on the left of panels (b) and (f) correspond to
zoomed-in probability scales. The x-axis represents time (t/τ ), and the y-axis denotes the site number. Each of the smaller panels [(a),(b) and
(e),(f)] are zoomed portions of panels (c) and (d), respectively, with the zoomed-in sections marked by rectangles.

under SEA [panel (e) of Fig. 4]. The late-time marginal evo-
lutions of unitarity [panel (b) of Fig. 4] and SEA [panel (f)
of Fig. 4] do not agree with each other; the unitary spikes are
sharper in comparison (see the associated color bars for the
difference in values). There are also fewer interference-like
patterns in the SEA case. The smearing of peaks as seen in
the JPD of Fig. 2 is also reflected in the marginals, as seen in
panels (c) and (d) of Fig. 4. Panel (d) is more smeared than
panel (c) in Fig. 4. In this case, we see in comparison to the
no-interaction case (Fig. 4) that under FI (Fig. 5) the marginal
probability spreads faster. We observe this by noting how
early the initial probability spike travels to the far end of the

lattice. This is because the walkers are repulsively interacting
with each other, and this interaction is causing the walkers
to spread. We can also see how, in both cases, the marginal
distribution is always peaked around the center (where the
walk originated from) no matter how faint. This suggests that
although the JPD shows a rapid spread to the boundary, the
marginal retains a dull peak at the origin of the walk. This is
not only the case with FI, but also in the other cases, as shown
in Table I. This is mostly true for the unitary case. In the case
of SEA evolution, the probability of finding the walkers at the
origin is less than the corresponding unitary scenarios, as it is
more spread out because of the dissipation.
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FIG. 5. Marginal probability of walker A on a ring graph with 11 sites, evolving under the full interaction Hamiltonian with αi = 10 for all
i’s (see Table I). Panels (a)–(c) correspond to unitary evolution, while panels (d)–(f) depict SEA evolution. Panels (a) and (e) show the initial
evolution of the marginal probability distribution for unitary and SEA dynamics, respectively, while panels (b) and (f) illustrate the late-time
evolution. The large color bars on the left of each panel represent probability values, and the smaller ones on the left of panels (b) and (f)
show corresponding zoomed-in probability scales. The x-axis represents time (t/τ ), and the y-axis denotes the site number. Each of the smaller
panels [(a),(b) and (e),(f)] are zoomed portions of panels (c) and (d), respectively, with the zoomed-in sections marked by rectangles.

Apart from various measures of probabilistic evolutions
(e.g., the JPD or marginals), we can characterize the walk by
studying the mean-square displacement (MSD) of the walks.
This tells us the walkers’ mean spread in space from their
initial position. We can compute the MSD via the following
equation (m, n are the site numbers of the walkers):

σMSD = 1

N

N∑
m,n

(m − n)2P t
a(m, n). (34)

If we consider the full interaction, i.e., the FI regime, we can
see in Fig. 6(a) that the MSD under unitary evolution fluc-
tuates less with increasing interaction strength and remains
almost constant at all times of the evolution. On the other

hand, the SEA-induced evolution becomes closer to unitary
evolution as the interaction strength increases. Also, at FI,
SEA MSD is higher than HI (Fig. 6).

In addition to MSD, we can also compute the Loschmidt
echo (LE) of the walk, which measures the overlap between
the initial (ρ0) and time-evolved (ρt ) density matrices, given
by

LE = tr(ρ0ρt ). (35)

LE tracks correlations between different times in the evolu-
tion. An alternative approach would be to compute LE using
the trace of ρ−tρt , but in this work we adopt the definition in
Eq. (35). For pure states, LE = 1. If it remains at 1 (for pure
initial states) or stabilizes at a value < 1 (for mixed states),
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FIG. 6. Mean-squared displacement (σMSD) computed from the
two-walker JPD using Eq. (34). Bold lines with markers represent the
moving average, while transparent lines show the MSD evolution.
Panel (a) corresponds to the FI regime, and (b) to the HI regime.
The numbers following SEA and Unitary in the legend indicate the
values of αi’s, representing interaction strength. The insets show the
early-time evolution of MSD.

the evolution is reversible. A gradual decrease in LE signals
increasing irreversibility. Consider the expression

LE = tr(ρ0ρt ) = tr(ρ0Utρ
0U†

t ). (36)

FIG. 7. Evolution of the moving average of Loschmidt echo over
time (short timescale). In the legend, “0” denotes no interaction,
while “10” indicates αi = 10 in Eq. (31). This corresponds to the full
interaction case (Table I). The inset shows the longer-time evolution.

We used Eq. (2) in the second equality. Under unitary evolu-
tion with a pure initial state ρ0, we have LE = 1. However,
in this work, we start with a mixed state, and since unitary
evolution preserves purity, LE remains constant but < 1. If
integrability is broken by adding interaction terms, LE may
decrease over time [52,53]. Let us look at Fig. 7. As time
increases, LE decreases for SEA evolution. It decreases faster
in the case of no interaction (inset of Fig. 7), and it decreases
slower in the case of full interaction. We also notice that LE

for unitarity changes much more slowly and is usually greater
than the SEA values. We also note that in the presence of in-
teraction, the LE for SEA is closer to that of the unitary value.
If we consider the HI regime, we know that the non-SEA
evolution is integrable, which can be seen from the LE plot,
as it remains unchanged upon varying interaction strength. We
plot this in Fig. 8. We see that LE varies differently compared
to the FI picture (Fig. 7). Also, the absence of extra interaction
terms makes the unitary LE much closer to the SEA LE in the
HI regime at initial times. However, as time progresses, SEA
evolution becomes more dissipated with interaction than even
the free-from-interaction case in the HI regime (see inset of
Fig. 8).

So far, we have seen how the characteristic measures of the
walk differ under the influence of unitary and SEA dynamics.
Now, we focus our attention on entropy. The principal tenet of
SEA being the generation of entropy, we expect to see entropy
gain and the corresponding decrease in mutual information
[M(ρ)] defined as (kB = 1)

M(ρ) = kBtr(ρ ln(ρ)) − kB

M∑
J=1

tr(ρJ ln(ρJ )). (37)
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FIG. 8. Evolution of the moving average of Loschmidt echo over
time (short timescale). In the legend, “0” denotes no interaction,
while “10” indicates α1 = 10 in Eq. (31). This corresponds to the
Hubbard interaction case (Table I). The inset shows the longer-time
evolution.

The decrease in M(ρ) is a measure of the loss of correla-
tion between the walkers. Especially under SEA evolution,
since no extra correlation is being created, this should be
the case. We can see this in Fig. 9, where we plot the time
evolution of the entropy of the two-walker system under both
unitary and SEA in the FI regime. As the interaction strength
increases, the unitary evolution slightly departs from integra-
bility, as seen from the deviation of otherwise constant entropy
in Fig. 9. What happens in other interaction regimes? For
instance, in the FIFH regime, where the weights of corre-
lated hopping and on-site potentials are tuned relative to the
hopping terms—a variation of the FI regime—we observe
in Fig. 10 that entropy growth is influenced by interaction
strength. In unitary evolution, entropy increases as the inter-
action terms break integrability, leading to deviations from
integrable dynamics. However, this is not the case for SEA.
Without interaction, SEA exhibits faster entropy production,
but as interaction strength increases, entropy production slows
down, delaying the onset of thermalization.

We can infer when the system reaches thermalization by
examining the evolution of M(ρ). Once it saturates, no fur-
ther correlations are lost, signaling the onset of thermalization.
Figure 11 reveals that even a small interaction induces sig-
nificant correlation buildup. As interaction strength increases,
M(ρ) saturates later, particularly in Fig. 11(a), where all
αi’s have equal weight. However, when the weight ratio is
skewed, correlation loss becomes extensive—surpassing even
the no-interaction case, as seen in Fig. 11(b). Notably, while
M(ρ) has not yet saturated within the timescale considered,
its eventual saturation value appears significantly lower in the
FIFH case than in FI. This suggests a direct dependence of
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FIG. 9. Evolution of entropy in the two-walker system under the
FI regime. The values of αi are indicated in the legend next to the
SEA and Unitary labels. The inset shows the entropy evolution of
subsystem A, where the original entropy values are plotted with
higher transparency, while the moving average is highlighted in bold.
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FIG. 10. Evolution of entropy in the two-walker system under
the FIFH regime. The values of α1 and α4 are indicated in the legend
next to the SEA and Unitary labels, with α2 = α3 = 0.1 fixed. The
inset shows the entropy evolution of subsystem A, where the original
entropy values are plotted with higher transparency, and the moving
average is highlighted in bold.
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(a)  FI

(b)  FIFH

FIG. 11. Mutual information [M(ρ )] computed using Eq. (37).
Bold lines represent the moving average, while transparent lines
show the evolution of M(ρ ). Panel (a) corresponds to the FI in-
teraction regime, and (b) to the FIFH regime. In (a), the numbers
following SEA and Unitary in the legend indicate the values of αi’s
representing interaction strength. In (b), they denote α1 = α4, with
α2 = α3 = 0.1.

M(ρ)’s saturation value on the relative strengths of different
interaction terms.

IV. DISCUSSION AND CONCLUSION

In this work, we theoretically explored the evolution of
two walkers under dissipative steepest entropy ascent (SEA)

dynamics, and we compared the results with bare unitary
evolution. By examining various interaction regimes, we an-
alyzed key characteristics of the walk, including the joint
probability distribution (JPD), mean-squared displacement
(σMSD), and the Loschmidt echo (LE ). We also investigated
entropy changes under unitary and SEA evolutions, and we
examined mutual information [M(ρ)] to gain insight into the
system’s thermalization.

We began by introducing the Beretta steepest entropy
ascent equation of motion (BSEA EOM) [42] for two com-
ponents of a composite system. However, our work does not
involve an interacting reservoir for thermalization. Instead, we
quench the system from a pure to a mixed state by introducing
noise [see Eq. (33)], without detailing the quenching process.
Postquench, we assume that the system evolves in isolation.
Unlike the Lindblad master equation, our approach does not
involve continuous interaction with an external environment,
eliminating the need for the Markovian approximation. In the
SEA framework, the system is initialized in a mixed state,
which means that it is already out of equilibrium. As a result,
it undergoes further dissipation, following the SEA principle
of maximum local entropy generation while respecting local
conservation laws (e.g., probability, energy).

Through the evolution of the JPD and the corresponding
marginal probability distribution, we demonstrate that SEA
evolution results in a greater probability spread across the
lattice. While interaction strengths and regimes influence this
spread, the overall trend remains consistent. The extent of
probability distribution spreading depends on the interaction
regime, as shown in Fig. 3. We examine the marginal proba-
bility distribution at both early and late times, as depicted in
Figs. 4 and 5. In SEA evolution, we observe smearing in late-
time marginals, indicating increased mixing. This probability
spread follows the same patterns observed in JPD evolution.

To better understand the nature of the walk, we examine the
evolution of σMSD, which quantifies the overall spread of the
walkers and the system’s behavior. Under unitary evolution,
σMSD remains nearly constant across all regimes, with minor
fluctuations. In contrast, SEA evolution exhibits a significant
spread, consistent with JPD and marginal results, and it is
influenced by interaction types. For instance, when the on-site
potential dominates, SEA and unitary spreads converge at
higher α1 values [Fig. 6(b)]. Increasing the weights of on-site
and correlated hopping terms α1, α4 accelerates walker spread
in the CHI regime. The full interaction regime exhibits a high
MSD [Fig. 6(a)], which can be further adjusted in the FIFH
regime, where on-site and correlated hopping terms dominate.
Across all interaction regimes, SEA spread σMSD increases in
the following order: FIFH < FI < CHI < HI.

Regarding the Loschmidt echo, we see that the SEA evo-
lution leads to a significant loss of coherence, which keeps
increasing with time. This starkly contrasts with the unitary
evolution, where coherence is preserved for weaker interac-
tions. As more interaction terms are introduced, we see a
steady decrease in LE of both evolutions (see Fig. 7 for the
FI and Fig. 8 for the HI regimes). Numerical results show that
in different regimes, LE under SEA compared to bare unitary
decreases in the following order: HI > CHI > FIFH > FI
(largest to smallest deviation at late times). This suggests that
as interaction terms increase, making unitary evolution more
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nonintegrable, SEA LE approaches unitary LE over time. The
ordering of σMSD and LE confirms that SEA evolution is more
sensitive to interaction terms than unitary evolution.

Furthermore, our analysis of entropy and mutual informa-
tion M(ρ) supports the conclusions above. The entropy plots
clearly illustrate how the onset of entropy saturation (max-
imum achievable entropy) depends on interaction strength.
Within the timescales and interaction regimes considered, the
free SEA entropy reaches its maximum. This trend is also
evident in the entropy of the subsystem, as shown in the insets
of Figs. 9 and 10. Interestingly, we confirm that subsystem
entropy not only decreases with an increasing α4/α2 ratio
but also saturates later, indicating delayed thermalization. A
similar analysis of M(ρ) provides further insight into the
thermalization process. The observed decrease in subsystem
entropy (and overall entropy in Fig. 10) aligns with the declin-
ing trend of mutual information. Notably, mutual information
does not reach saturation within the timescale considered,
suggesting that longer timescale studies are needed to fully
understand the thermalization process.

In this work, we aim to extend the SEA formalism to
discuss the evolution of multiwalker quantum systems. In
doing so, we investigated the varied interaction regimes and
their effects on the characteristic measures of the walk. We
have also studied how the entropy saturation is set and how
the introduction of the interaction delays the same onset, as
hinted in [24]. We can implement a two-walker continuous-
time setup under SEA on superconducting qubit platforms
such as the one described in Ref. [54]. A theoretical formalism
using this setup can be established from the work of Ref. [46].
Our results motivate us to continue our research to perform a
detailed analysis on the various times of thermalization for
various interaction strengths under SEA, and how different
those thermalization times are from the unitary case. We will
also be interested in knowing if the scaling of thermalization
times with system sizes is the same for both unitary and SEA
evolutions. And that will lead us to understand if there exist
universal scaling laws in the SEA evolution thus considered.
We can also include more than two walkers using the concept
of hypoequilibrium [51] to solve the complicated many-body
SEA equation and simulate a dissipative continuous-time
quantum walk in this regime.
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APPENDIX: DERIVATION OF TWO-COMPONENT
EQUATION OF MOTION

Here we derive the expression for the dissipation operator,
described in Eq. (21), for the dynamics of the composite
system. The detailed derivation of the dissipation operator
for the single-particle case is described in the Appendixes of
Ref. [45]. Here, in this appendix, to avoid repetition, we high-
light the core tenets of the steepest entropy ascent formalism.
Thereafter, we discuss how we follow the SEA formalism to
arrive at the composite equation of motion.

1. The SEA principle

The idea of SEA is embedded in the variational principle.
We seek to identify the path in a given state space (defined by
density matrices) that will satisfy the following properties:

(i) The conserved quantities that generate the motion (en-
ergy, momentum, number of particles, probability, etc.) are
invariant under time evolution.

(ii) The local entropy production rate is always positive-
semidefinite.

(iii) The evolution proceeds in the direction of maximum
entropy production.

Keeping these in mind, we note that the set of conserved
quantities defining the constraints of the evolution lie in a
hyperplane. The entropy functional generally does not lie in
the normal direction to this hyperplane. Therefore, to find the
gradient of the entropy functional projected relative to these
constraints, we seek the direction of the projected normal
vector, which defines the SEA direction. To perform this, we
apply calculus of variations to find the suitable Lagrange’s
multipliers and then use that to write the equation of motion.
To this extent, we proceed as follows.

2. The composite dissipation structure

The steepest entropy ascent (SEA) equation for composite
systems introduces a structure-dependent dissipation term [as
in Eq. (20)]:

dρ

dt
= −i[H, ρ] −

M∑
J=1

{DJ , ρJ} ⊗ ρJ , (A1)

where DJ is the local dissipation operator on the subsystem
J , and ρJ = TrJ (ρ) is the reduced density operator of J . As
is important in the context of SEA, the rate of change of
the overall system entropy s(ρ) = −kBTr(ρ ln ρ) is given by
[24,36,39]

ds(ρ)

dt
= −

∑
J

Tr
[{DJ , ρJ}(S)J

ρ

]
. (A2)

Now, if we trace the subsystem J in HJ in Eq. (20), or Eq. (A1)
above, we get the corresponding local evolution for the sub-
system J:

dρJ

dt
= −i[HJ , ρJ ] − iTrJ ([V, ρ]) − {DJ , ρJ}. (A3)

So far, this is a general dissipative dynamical equation. The
crucial SEA assumption will be implemented below.
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3. The SEA variational principle

To maintain a positive-semidefinite nature of the den-
sity matrices during the evolution, we define the generalized
square root:

γJ = √
ρJU, (A4)

where U is an arbitrary unit operator. It implies ρJ = γJγ
†
J

.
Using this decomposition of ρ, we can expand the dissipator
anticommutator as

−{DJ , ρJ} = γ̇ d
J
γ

†
J

+ γJ γ̇
d†
J

with γ̇ d
J

= −DJγJ . (A5)

We also define the symmetric inner product (·|·) in the set
L(HJ ) of linear operators on HJ as [41,45]

(X |Y ) = 1
2 Tr(X †Y + Y †X ). (A6)

We define the inner product so that the unit trace condition
for ρJ is rewritten as (γJ |γJ ) = 1. This ensures that the tra-
jectories1 traced by the evolution of γJ are confined to the
unit sphere in L(HJ ).2 We are now in a position to define the
distance traveled between t and t+dt along these trajectories
as

d	J =
√

(γ̇J | ĜJ (γJ ) |γ̇J ) dt, (A7)

where ĜJ (γJ ) is some real, dimensionless, symmetric, and
positive-definite operator on L(HJ ) (superoperator on H) that
plays the role of a local metric tensor field (and may be a
nonlinear function of γJ ) [24,36,39,41,45]. The rate of change
of the overall entropy of the system, s(ρ), Eq. (A2), and of
the mean value of the overall system of conserved properties
ck (ρ) = Tr(ρCk ), where [∗,Ck]H = 0, can be rewritten as

ds(ρ)

dt
=

M∑
J=1

ṡ|J , ṡ|J = (
2(S)J

ργJ

∣∣γ̇ d
J

)
, (A8)

dck (ρ)

dt
=

M∑
J=1

ċk|J , ċk|J = (
2(Ck )J

ργJ

∣∣γ̇ d
J

)
, (A9)

exhibiting additive contributions from the subsystems. Fi-
nally, we implement the SEA principle. According to this,
the time evolution ensures that the “direction of change” of
the local trajectory, γJ (t ), influenced by the dissipative part
of the dynamics, maximizes the local contribution ṡ|J to the
overall system’s entropy production rate. This happens un-
der the condition that the constraints of the motion ċk|J = 0
have no local contribution to the rate of change of the global
constants of the motion. We state the variational principle

1In the SEA evolution, since we are invested in “paths,” “maxi-
mization,” and similar distance-related concepts, we need to define
the distance in this context.

2The Bloch-sphere in the case of a single qubit.

that yields expressions for γ̇ d
J

’s and the DJ
ρ , which define the

composite-system version of the SEA equation of motion, as
follows:

max
γ̇ d

J

ϒJ = ṡ|J −
∑

k

βJ
k ċk|J − kBτJ

2

(
γ̇ d

J

∣∣ĜJ

∣∣γ̇ d
J

)
, (A10)

Here βJ
k is the kth Lagrange multiplier associated with the kth

conserved quantity ck (ρ) for the subsystem J . And τJ is the
Lagrange multiplier associated with the relaxation time of the
subsystem J [41,45]. Solving the variational problem yields
the following:

∣∣γ̇ d
J

) = 1

kBτJ

Ĝ−1
J

∣∣2(M )J
ργJ

)
(A11)

and the locally perceived nonequilibrium Massieu operator
[36]

(M )J
ρ = (S)J

ρ −
∑

k

βJ
k (Ck )J

ρ. (A12)

The Lagrange multipliers βJ
k [implicit in (M )J

ρ] are the so-
lution of the system of equations, obtained by substituting
Eq. (A11) into the conservation constraints,(

(C	)J
ργJ

∣∣Ĝ−1
J

∣∣(M )J
ργJ

) = 0 ∀	. (A13)

We can use Cramer’s rule to solve this system of equations for
the βJ

k ’s. As seen in Eqs. (23) and (24), the βJ
k ’s are nonlinear

functionals of ρ that may be interpreted as “local nonequi-
librium entropic potentials” conjugated with the conserved
properties. For example, for C2 = H , the conservation of
energy, βJ

2 , plays the role of “local nonequilibrium inverse
temperature” conjugated with the locally perceived energy,
and for the stable equilibrium states of the SEA dynamics, it
coincides with the thermodynamic inverse temperature kBβJ .

Finally, in Eq. (A1) (the equation of motion results in-
dependent of the arbitrary unitary operators U used in the
definition of γJ ), we can restrict the choice of the metric
superoperator ĜJ . We assume that ĜJ = L−1

J
ÎJ , with LJ some

strictly positive Hermitian operator on HJ , possibly a nonlin-
ear function of ρJ , so that ĜJ |X ) = |L−1

J
X ), Ĝ−1

J |X ) = |LJX ),

(XγJ |Ĝ−1
J |Y γJ ) = 1

2 Tr[ρJ (X †LJY + Y †LJX )]. (A14)

Recalling Eq. (A5) with Eq. (A11), the dissipative term in
Eq. (A1) becomes

−{
DJ

ρ, ρJ
} = 2

kBτJ

[
LJ (M )J

ρρJ + ρJ (M )J
ρLJ

]
, (A15)

and the system of equations that determines the Lagrange
multipliers βJ

k in (M )J
ρ is

Tr
(
ρJ

[
(C	)J

ρLJ (M )J
ρ + (M )J

ρLJ (C	)J
ρ

]) = 0 ∀	. (A16)

Therefore, all terms have become dependent on the local state
operator ρJ . Now that we have the form of DJ , we show how
to obtain Eq. (21) from these relations. We need to define our
metric, and explicitly mention the conserved quantities.
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4. Simplest composite-system BSEA equation

We make the following assumptions:
(i) Uniform Fisher-Rao metric: ĜJ = ÎJ ⇒ LJ = IJ .
(ii) Conserved properties: C1 = I , C2 = H .
Under the first assumption, we get

DJ
ρ = − 2

kBτJ

[
(S)J

ρ −
∑

k

βJ
k (Ck )J

ρ

]
. (A17)

Using Eq. (A17) with Eq. (A16) along with kB = 1, we
recover Eqs. (22)–(24). The second assumption simply
implies

DJ = − 2

τJ

[
(S)J

ρ − βJ
1 IJ − βJ

2 (H )J

]
. (A18)
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